Gait parameters during the Timed Up-and-Go dual-task test: A validation study of video-recorded data

2020 ◽  
Vol 81 ◽  
pp. 2-3
Author(s):  
A.C. Åberg ◽  
H.B. Åhman ◽  
F. Olsson ◽  
O. Tarassova ◽  
Y. Cedervall ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Haidzir Manaf ◽  
Maria Justine ◽  
Mazlifah Omar

The aim of this study was to determine whether stroke survivor’s gait performance during dual-task Timed Up and Go (TUG) test is correlated with the level of functional balance and motor impairment. Thirty stroke survivors (22 men, 8 women) were recruited for this study. The level of functional balance (Berg Balance Scale) and motor impairment (Fugl-Meyer assessment lower extremity) were assessed prior to the TUG test. TUG test was conducted under three attentional loading conditions (single, dual motor, and dual-cognitive). The time and number of steps were used to quantify gait parameters. The Spearmen’s rank correlation coefficient was used to evaluate the relationship between these variables. There was moderate to strong negative correlation between functional balance and gait parameters (range −0.53 to −0.73,P<0.05). There was a weak negative correlation observed between the time taken to complete the single task and motor impairment (rs=-0.43;P=0.02) dual motor task and motor impairment (rs=-0.41;P=0.02). However, there were no significant correlations between lower limb motor impairment and the number of steps in all conditions. These findings suggest that functional balance may be an influential domain of successful dual-task TUG in stroke.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Rabiatul Adawiah Abdul Rahman ◽  
Fazira Rafi ◽  
Fazah Akhtar Hanapiah ◽  
Azlina Wati Nikmat ◽  
Nor Azira Ismail ◽  
...  

Background. Tasks requiring simultaneous mobility and cognition (dual tasks) have been associated with incidence of falls. Although these deficits have been documented in individuals with neurologic disorder, the effect of dual task in children with traumatic brain injury has not been fully explored. Objective. To investigate the effect of dual-task (dual-motor and dual-cognitive task) conditions on spatiotemporal gait parameters during timed up and go test in children with traumatic brain injury. Methods and Material. A total of 14 children with traumatic brain injury and 21 typically developing children participated in this case-control study. Functional balance was assessed before the actual testing to predict the risk of falls. Timed up and go test was performed under single-task and dual-task (dual-motor and dual-cognitive task) conditions. Spatiotemporal gait parameters were determined using the APDM Mobility Lab system. The descriptive statistics and t-test were used to analyze demographic characteristics and repeated measure ANOVA test was used to analyze the gait parameters. Results. Under dual-task (dual-motor and dual-cognitive task) conditions during the timed up and go test, gait performance significantly deteriorated. Furthermore, the total time to complete the timed up and go test, stride velocity, cadence, and step time during turning were significantly different between children with traumatic brain injury and typically developing children. Conclusions. These findings suggest that gait parameters were compromised under dual-task conditions in children with traumatic brain injury. Dual-task conditions may become a component of gait training to ensure a complete and comprehensive rehabilitation program.


Geriatrics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 77
Author(s):  
Johannes Riis ◽  
Stephanie M. Byrgesen ◽  
Kristian H. Kragholm ◽  
Marianne M. Mørch ◽  
Dorte Melgaard

This study examined the concurrent validity between gait parameters from the GAITRite walkway and functional balance test commonly used in fall risk assessment. Patients were sampled from one geriatric outpatient clinic. One physiotherapist evaluated the patients on the GAITRite walkway with three repetitions in both single- and dual-task conditions. Patients were further evaluated with Bergs Balance scale (BBS), Dynamic Gait index (DGI), Timed Up and Go (TUG), and Sit To Stand test (STS). Correlations between quantitative gait parameters and functional balance test were analyzed with Spearman’s rank correlations. Correlations strength was considered as follows: negligible <0.1, weak 0.10–0.39, moderate 0.40–0.69, and strong ≥0.70. We included 24 geriatric outpatients in the study with a mean age of 80.6 years (SD: 5.9). Patients received eight (SD: 4.5) different medications on average, and seven (29.2%) patients used walkers during ambulation. Correlations between quantitative gait parameters and functional balance test ranged from weak to moderate in both single- and dual-task conditions. Moderate correlations were observed for DGI, TUG, and BBS, while STS showed weak correlations with all GAITRite parameters. For outpatients analyzed on the GAITRite while using walkers, correlations showed no clear pattern across parameters with large variation within balance tests.


2019 ◽  
Vol 5 (4) ◽  
pp. 190-198
Author(s):  
Tahereh Pourkhani ◽  
◽  
Hassan Daneshmandi ◽  
Ali Asghar Norasteh ◽  
Babak Bakhshayesh Eghbali ◽  
...  

Background: Parkinson disease (PD) is characterized by motor and non-motor symptoms that affect patients’ functions, especially while performing dual-tasks a critical factor in everyday living. However, many controversies exist about the benefits of dual-task training in patients with PD. Objectives: This study assessed the efficacy of motor and cognitive dual-task training in improving balance and gait parameters in people with idiopathic PD. Materials & Methods: A single-blind controlled trial was conducted on PD patients living in Guilan Province of Iran, in 2018-2019. A total of 30 PD patients (Hoehn and Yahr stage II-III while on medication) were assigned to the cognitive dual-task training group (n=10), motor dual-task training group (n=10), and single-task control group (n=10). All groups received 30 sessions of different exercises for 10 consecutive weeks. The patients’ balance and some spatiotemporal gait parameters were respectively assessed with timed up and go test and HD VideoCam-Kinovea before and after training and then 1 month later. Results: Both dual-task and single-task trainings improved the outcome measures (timed up and go test (F=535.54; P=0.000), stride length (F=87.41; P=0.00), stride time (F=102.11; P=0.00), cadence (F=286.36; P=0.00), swing time (F=48.90; P=0.00), and stance time (F=40.56; P=0.00)). These improvements were maintained at 1-month follow-up, although the effect slightly reduced. No significant differences were found between the study groups (P>0.05). Conclusion: Motor/cognitive dual-task training and single-task training were found to be significantly and equally effective in improving balance and gait parameters in people with PD.


GeroPsych ◽  
2016 ◽  
Vol 29 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Véronique Cornu ◽  
Jean-Paul Steinmetz ◽  
Carine Federspiel

Abstract. A growing body of research demonstrates an association between gait disorders, falls, and attentional capacities in older adults. The present work empirically analyzes differences in gait parameters in frail institutionalized older adults as a function of selective attention. Gait analysis under single- and dual-task conditions as well as selective attention measures were collected from a total of 33 nursing-home residents. We found that differences in selective attention performances were related to the investigated gait parameters. Poorer selective attention performances were associated with higher stride-to-stride variabilities and a slowing of gait speed under dual-task conditions. The present findings suggest a contribution of selective attention to a safe gait. Implications for gait rehabilitation programs are discussed.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ramon J. Boekesteijn ◽  
José M. H. Smolders ◽  
Vincent J. J. F. Busch ◽  
Alexander C. H. Geurts ◽  
Katrijn Smulders

Abstract Background Although it is well-established that osteoarthritis (OA) impairs daily-life gait, objective gait assessments are not part of routine clinical evaluation. Wearable inertial sensors provide an easily accessible and fast way to routinely evaluate gait quality in clinical settings. However, during these assessments, more complex and meaningful aspects of daily-life gait, including turning, dual-task performance, and upper body motion, are often overlooked. The aim of this study was therefore to investigate turning, dual-task performance, and upper body motion in individuals with knee or hip OA in addition to more commonly assessed spatiotemporal gait parameters using wearable sensors. Methods Gait was compared between individuals with unilateral knee (n = 25) or hip OA (n = 26) scheduled for joint replacement, and healthy controls (n = 27). For 2 min, participants walked back and forth along a 6-m trajectory making 180° turns, with and without a secondary cognitive task. Gait parameters were collected using 4 inertial measurement units on the feet and trunk. To test if dual-task gait, turning, and upper body motion had added value above spatiotemporal parameters, a factor analysis was conducted. Effect sizes were computed as standardized mean difference between OA groups and healthy controls to identify parameters from these gait domains that were sensitive to knee or hip OA. Results Four independent domains of gait were obtained: speed-spatial, speed-temporal, dual-task cost, and upper body motion. Turning parameters constituted a gait domain together with cadence. From the domains that were obtained, stride length (speed-spatial) and cadence (speed-temporal) had the strongest effect sizes for both knee and hip OA. Upper body motion (lumbar sagittal range of motion), showed a strong effect size when comparing hip OA with healthy controls. Parameters reflecting dual-task cost were not sensitive to knee or hip OA. Conclusions Besides more commonly reported spatiotemporal parameters, only upper body motion provided non-redundant and sensitive parameters representing gait adaptations in individuals with hip OA. Turning parameters were sensitive to knee and hip OA, but were not independent from speed-related gait parameters. Dual-task parameters had limited additional value for evaluating gait in knee and hip OA, although dual-task cost constituted a separate gait domain. Future steps should include testing responsiveness of these gait domains to interventions aiming to improve mobility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Soulard ◽  
J. Vaillant ◽  
R. Balaguier ◽  
N. Vuillerme

AbstractInertial measurement units (IMUs) are increasingly popular and may be usable in clinical routine to assess gait. However, assessing their intra-session reliability is crucial and has not been tested with foot-worn sensors in healthy participants. The aim of this study was to assess the intra-session reliability of foot-worn IMUs for measuring gait parameters in healthy adults. Twenty healthy participants were enrolled in the study and performed the 10-m walk test in single- and dual-task ('carrying a full cup of water') conditions, three trials per condition. IMUs were used to assess spatiotemporal gait parameters, gait symmetry parameters (symmetry index (SI) and symmetry ratio (SR)), and dual task effects parameters. The relative and the absolute reliability were calculated for each gait parameter. Results showed that spatiotemporal gait parameters measured with foot-worn inertial sensors were reliable; symmetry gait parameters relative reliability was low, and SR showed better absolute reliability than SI; dual task effects were poorly reliable, and taking the mean of the second and the third trials was the most reliable. Foot-worn IMUs are reliable to assess spatiotemporal and symmetry ratio gait parameters but symmetry index and DTE gait parameters reliabilities were low and need to be interpreted with cautious by clinicians and researchers.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Magdalena Hagner-Derengowska ◽  
Krystian Kałużny ◽  
Wojciech Hagner ◽  
Anna Kałużna ◽  
Bartosz Kochański ◽  
...  

Introduction. The paper aims to evaluate the influence of two different demanding cognitive tasks on gait parameters using BTS SMART system analysis.Patients and Methods. The study comprised 53 postmenopausal women aged 64.5 ± 6.7 years (range: 47–79). For every subject, gait analysis using a BTS SMART system was performed in a dual-task study design under three conditions: (I) while walking only (single task), (II) walking while performing a simultaneous simple cognitive task (SCT) (dual task), and (III) walking while performing a simultaneous complex cognitive task (CCT) (dual task). Time-space parameters of gait pertaining to the length of a single support phase, double support phase, gait speed, step length, step width, and leg swing speed were analyzed.Results. Performance of cognitive tests during gait resulted in a statistically significant prolongation of the left (by 7%) and right (by 7%) foot gait cycle, shortening of the length of steps made with the right extremity (by 4%), reduction of speed of swings made with the left (by 11%) and right (by 8%) extremity, and reduction in gait speed (by 6%).Conclusions. Performance of cognitive tests during gait changes its individual pattern in relation to the level of the difficulty of the task.


2014 ◽  
Vol 18 (5) ◽  
pp. 445-452 ◽  
Author(s):  
Rita C. Guedes ◽  
Rosângela C. Dias ◽  
Leani S. M. Pereira ◽  
Sílvia L. A. Silva ◽  
Lygia P. Lustosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document