Sagittal spinal alignment in osteoporotic vertebral compression fracture patients measured with three-dimensional gait analysis

2021 ◽  
Vol 90 ◽  
pp. 287-288
Author(s):  
L. Van Den Eijnde ◽  
E. Jacobs ◽  
S. Huysmans ◽  
R. Marcellis ◽  
P. Willems ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pei Lun Hu ◽  
Ji Sheng Lin ◽  
Hai Meng ◽  
Nan Su ◽  
Yong Yang ◽  
...  

Abstract Background Conventional percutaneous vertebroplasty (PVP) are mainly guided by C-arm fluoroscopy, and it usually leads to excessive X-ray radiation exposure to patients, surgeons, and anesthetists. Moreover, multi-time fluoroscope may prolong the operation time. 3D-printed template could help minimize fluoroscopy shot times and fluoroscopy dosage during operation, and shorten operation time. We perform this study to compare the efficacy and accuracy of PVP assisted by “three-dimensional printed individual guide template” versus conventional PVP. Method Patients who suffered acute painful single segment osteoporotic vertebral compression fracture(OVCF) needed operative treatment were randomly assigned into three-dimensional printing individual guide template-assisted percutaneous vertebroplasty group (group A) or conventional PVP guided by C-arm fluoroscopy group (group B) at a 1:1 ratio. Fluoroscopy times for puncture points (FTPP), total radiation dosages (TRD), total fluoroscopy time (TFT), and total operation time (TOT) were recorded as the main evaluation factors to evaluate the two operation procedures. Results A total of 36 acute painful single segment OVCF patients were successfully operated on, and each group has 18 patients. None of the patients presented symptomatic complications. The surgical success rate in group A was 94.4%(17/18), one patient in the group A was failed and then operated by conventional procedure. FTPP (1.8 ± 0.8 in group A vs 5.2 ± 1.9 in group B, P < 0.05), TRD (4.9 ± 0.9 mGy vs 7.9 ± 1.6 mGy, P < 0.05), TFT (16.7 ± 2.9 vs 26.6 ± 5.3, P < 0.05), and total operation time (19.4 ± 2.4 min vs 27.8 ± 4.0 min, P < 0.05) were presented statistically difference in the two groups. The incidence of cement leakage occurred in group A (3/18, 16.7%) was less than that occurred in group B (7/18, 38.9%) (P > 0.05). Conclusions Compared with the conventional PVP, “three-dimensional-printed individual guide template-assisted PVP” could minimize fluoroscopy shot times during operation and fluoroscopy dosage, shorten operation time, and is a more precise and feasible operation method. Trial registration The present study was registered with the Chinese Clinical Trial Registry (ChiCTR) (http://www.chictr.org.cn), and its registration no. is ChiCTR1900024283.


2021 ◽  
Vol 90 ◽  
pp. 238-239
Author(s):  
R. Senden ◽  
L. Van Den Eijnde ◽  
E. Jacobs ◽  
S. Huysmans ◽  
R. Marcellis ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhongcheng An ◽  
Chen Chen ◽  
Junjie Wang ◽  
Yuchen Zhu ◽  
Liqiang Dong ◽  
...  

Abstract Objective To explore the high-risk factors of augmented vertebra recompression after percutaneous vertebral augmentation (PVA) in the treatment of osteoporotic vertebral compression fracture (OVCF) and analyze the correlation between these factors and augmented vertebra recompression after PVA. Methods A retrospective analysis was conducted on 353 patients who received PVA for a single-segment osteoporotic vertebral compression fracture from January 2017 to December 2018 in our department according to the inclusion criteria. All cases meeting the inclusion and exclusion criteria were divided into two groups: 82 patients in the recompression group and 175 patients in the non-compression group. The following covariates were reviewed: age, gender, body mass index (BMI), injured vertebral segment, bone mineral density (BMD) during follow-up, intravertebral cleft (IVC) before operation, selection of surgical methods, unilateral or bilateral puncture, volume of bone cement injected, postoperative leakage of bone cement, distribution of bone cement, contact between the bone cement and the upper or lower endplates, and anterior height of injured vertebrae before operation, after surgery, and at the last follow-up. Univariate analysis was performed on these factors, and the statistically significant factors were substituted into the logistic regression model to analyze their correlation with the augmented vertebra recompression after PVA. Results A total of 257 patients from 353 patients were included in this study. The follow-up time was 12–24 months, with an average of 13.5 ± 0.9 months. All the operations were successfully completed, and the pain of patients was relieved obviously after PVA. Univariate analysis showed that in the early stage after PVA, the augmented vertebra recompression was correlated with BMD, surgical methods, volume of bone cement injected, preoperative IVC, contact between bone cement and the upper or lower endplates, and recovery of anterior column height. The difference was statistically significant (P < 0.05). Among them, multiple factors logistic regression elucidated that more injected cement (P < 0.001, OR = 0.558) and high BMD (P = 0.028, OR = 0.583) were negatively correlated with the augmented vertebra recompression after PVA, which meant protective factors (B < 0). Preoperative IVC (P < 0.001, OR = 3.252) and bone cement not in contact with upper or lower endplates (P = 0.006, OR = 2.504) were risk factors for the augmented vertebra recompression after PVA. The augmented vertebra recompression after PVP was significantly less than that of PKP (P = 0.007, OR = 0.337). Conclusions The augmented vertebra recompression after PVA is due to the interaction of various factors, such as surgical methods, volume of bone cement injected, osteoporosis, preoperative IVC, and whether the bone cement is in contact with the upper or lower endplates.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ji Guo ◽  
Weifeng Zhai ◽  
Licheng Wei ◽  
Jianpo Zhang ◽  
Lang Jin ◽  
...  

Abstract Background This study was conducted to investigate the outcomes and complications of balloon kyphoplasty (KP) for the treatment of osteoporotic vertebral compression fracture (OVCF) in patients with rheumatoid arthritis (RA) and compare its radiological and clinical effects with OVCF patients without RA. Methods Ninety-eight patients in the RA group with 158 fractured vertebrae and 114 patients in the control group with 150 vertebrae were involved in this study. Changes in compression rate, local kyphotic angle, visual analog scale (VAS) and Oswestry disability index (ODI) scores, conditions of bone cement leakage, refracture of the operated vertebrae, and new adjacent vertebral fractures were examined after KP. In addition, patients in the RA group were divided into different groups according to the value of erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and whether they were glucocorticoid users or not to evaluate their influence on the outcomes of KP. Results KP procedure significantly improved the compression rate, local kyphotic angle, and VAS and ODI scores in both RA and control groups (p<0.05). Changes in compression rate and local kyphotic angle in the RA group were significantly larger than that in the control group (p<0.05), and patients with RA suffered more new adjacent vertebral fractures after KP. The outcomes and complications of KP from different ESR or CRP groups did not show significant differences. The incidence of cement leakage in RA patients with glucocorticoid use was significantly higher than those who did not take glucocorticoids. In addition, RA patients with glucocorticoid use suffered more intradiscal leakage and new adjacent vertebral fractures. Conclusions OVCF patients with RA obtained more improvement in compression rate and local kyphotic angle after KP when compared to those without RA, but they suffered more new adjacent vertebral fractures. Intradiscal leakage and new adjacent vertebral fractures occurred more in RA patients with glucocorticoid use. Trial registration Retrospectively registered.


Sign in / Sign up

Export Citation Format

Share Document