Cryogenic brines as diagenetic fluids: Reconstructing the diagenetic history of the Victoria Land Basin using clumped isotopes

2018 ◽  
Vol 224 ◽  
pp. 154-170 ◽  
Author(s):  
Philip T. Staudigel ◽  
Sean Murray ◽  
Daniel P. Dunham ◽  
Tracy D. Frank ◽  
Christopher R. Fielding ◽  
...  
2016 ◽  
Author(s):  
Rachel Fliflet ◽  
◽  
Justin M. Poirier ◽  
Brian J. Mahoney ◽  
Kent M. Syverson

2016 ◽  
Author(s):  
Rachel Fliflet ◽  
◽  
Justin M. Poirier ◽  
J. Brian Mahoney ◽  
Kent M. Syverson

1998 ◽  
Vol 134 (3) ◽  
pp. 653-662 ◽  
Author(s):  
Leonardo Sagnotti ◽  
Fabio Florindo ◽  
Kenneth L. Verosub ◽  
Gary S. Wilson ◽  
Andrew P. Roberts

2018 ◽  
Vol 15 (148) ◽  
pp. 20180560 ◽  
Author(s):  
Giliane P. Odin ◽  
Maria E. McNamara ◽  
Hans Arwin ◽  
Kenneth Järrendahl

Scarab beetles (Coleoptera: Scarabaeidae) can exhibit striking colours produced by pigments and/or nanostructures. The latter include helicoidal (Bouligand) structures that can generate circularly polarized light. These have a cryptic evolutionary history in part because fossil examples are unknown. This suggests either a real biological signal, i.e. that Bouligand structures did not evolve until recently, or a taphonomic signal, i.e. that conditions during the fossilization process were not conducive to their preservation. We address this issue by experimentally degrading circularly polarizing cuticle of modern scarab beetles to test the relative roles of decay, maturation and taxonomy in controlling preservation. The results reveal that Bouligand structures have the potential to survive fossilization, but preservation is controlled by taxonomy and the diagenetic history of specimens. Further, cuticle of specific genus ( Chrysina ) is particularly decay-prone in alkaline conditions; this may relate to the presence of certain compounds, e.g. uric acid, in the cuticle of these taxa.


1999 ◽  
Vol 29 ◽  
pp. 131-135 ◽  
Author(s):  
M. Guglielmin ◽  
F. Dramis

AbstractKnowledge of permafrost characteristics and distribution in Antarctica and their relationships with present and past climates is still poor. This paper reports investigations on permafrost in an area located between Nansen Ice Sheet to the south and Mount Melbourne (2732 m a.s.l.) to the north. Investigation methods included geomorphological surveys and geoelectrical soundings as well as crystallography, chemical and isotopic analyses of the ground ice. Geomorphological surveys helped to explain the relationships between periglacial landforms (e.g. rock glaciers and patterned ground) and the glacial history of the area. Geoelectrical soundings allowed us to define different ground-ice units in the ice-free areas. Each unit was characterised by a different type of permafrost (dry or ice-poor permafrost, marine or continental massive buried ice and sub-sea permafrost). To identify the nature of ground ice, trenches were dug and some shallow boreholes were drilled to a maximum depth of-3.6 m in massive buried ice. Samples of both ice-poor permafrost and massive ice were collected and analyzed. Chemical, isotopic δ18O and crystal analyses were also carried out. The relationships between climate and thermal regimes of the active layer and the upper part of permafrost were determined using a monitoring station for ground temperatures at Boulder Clay Glacier, near the Italian Antarctic station. During winter, there were several significant thermal-inversion events in the ground, which cannot be explained only by air-temperature changes, suggesting a possible influence of winter snowfall, even if these events are usually considered very rare.


1987 ◽  
Vol 36 ◽  
pp. 275-287
Author(s):  
Margit Jensen ◽  
Elsebeth Thomsen

The diagenetic history of the skeletal elements of Late Pleistocene-Holocene Ophiura sarsi from the shelf off northern Norway (Andfjorden, Malangsdjupet) is elucidated by comparison with natural and induced degradation of the skeletal elements of Recent ophiuroids (brittle stars) and asteroids (sea stars) from Danish waters. Dissolution features ("core-and-rind") in the trabeculae of fossil and Recent echinoderm stereom are initiated during death and early decay of organic tissue in the animals. The trabeculae have a polycrystal­line lamellar ultrastructure and lose their older central part during later stages of dissolution, which are dependant on undersaturation of the sea-water with regard to CaC03• The presence of undersaturated sea-water is supported by palaeoecological studies (Thomsen & Vorren 1984, 1986) implying oxygen deficient periods in the Late Pleistocene and an increased biogenic production in the Holocene. Pyrite framboids are situated in the secondary voids within the trabeculae and in the pore space of the stereom of the Late Pleistocene elements. No pyrite is observed within the polycrystalline lamellar ultrastructure of the trabeculae. The Late Pleistocene "pyritization" took place during oxygen deficient periods at the sediment-water interface or within the reduced zone of the topmost sediment.


Sign in / Sign up

Export Citation Format

Share Document