Juvenile continental crust evolution in a modern oceanic arc setting: petrogenesis of Cenozoic felsic plutons in Fiji, SW Pacific

Author(s):  
Chris S. Marien ◽  
Elizabeth K. Drewes-Todd ◽  
Allen Stork ◽  
Erin Todd ◽  
James B. Gill ◽  
...  
2000 ◽  
Vol 37 (2-3) ◽  
pp. 359-383 ◽  
Author(s):  
Toby Rivers ◽  
David Corrigan

A continental-margin magmatic arc is inferred to have existed on the southeastern (present coordinates) margin of Laurentia from Labrador to Texas from ~1500-1230 Ma, with part of the arc subsequently being incorporated into the 1190-990 Ma collisional Grenville Orogen. Outside the Grenville Province, where the arc is known as the Granite-Rhyolite Belt, it is undeformed, whereas within the Grenville Province it is deformed and metamorphosed. The arc comprises two igneous suites, an inboard, principally quartz monzonitic to granodioritic suite, and an outboard tonalitic to granodioritic suite. The quartz monzonite-granodiorite suite was largely derived from continental crust, whereas the tonalitic-granodiorite suite is calc-alkaline and has a juvenile isotopic signature. Available evidence from the Grenville Province suggests that the arc oscillated between extensional and compressional settings several times during the Mesoproterozoic. Back-arc deposits of several ages, that formed during relatively brief periods of extension, include (1) mafic dyke swarms subparallel to the arc; (2) continental sediments, bimodal volcanics and plateau basalts; (3) marine sediments and volcanics formed on stretched continental crust; and (4) ocean crust in a marginal basin. Closure of the back-arc basins occurred during the accretionary Pinwarian (~1495-1445 Ma) and Elzevirian (~1250-1190 Ma) orogenies, as well as during three pulses of crustal shortening associated with the 1190-990 Ma collisional Grenvillian Orogeny. During the Elzevirian Orogeny, closure of the Central Metasedimentary Belt marginal basin in the southeastern Grenville Province was marked by subduction-related magmatism as well as by imbrication of back-arc deposits. The presence of a continental-margin magmatic arc on southeastern Laurentia during the Mesoproterozoic implies that other coeval magmatism inboard from the arc took place in a back-arc setting. Such magmatism was widespread and chemically diverse and included large volume "anorogenic" anorthosite-mangerite-charnockite-granite (AMCG) complexes as well as small volume alkaline, quartz-saturated and -undersaturated "within-plate" granitoids. Recognition of the ~300 million year duration of the Mesoproterozoic convergent margin of southeastern Laurentia suggests that there may be useful parallels with the evolution of the Andes, which has been a convergent margin since the early Paleozoic.


2000 ◽  
Vol 47 ◽  
pp. 1-27
Author(s):  
A.A. Garde ◽  
C.R.L. Friend ◽  
A.P. Nutman ◽  
M. Marker

from the Akia terrane, southern West Greenland, supported by Sm-Nd isotope geochemistry, document its middle Archaean accretional history and provide new evidence about the location of its northern boundary. Zircon populations in grey gneiss and inherited zircons in granite show that magmatic accretion of new continental crust, dominated by intrusion of tonalite sheets in a convergent island arc setting, occurred between c. 3050 and 3000 Ma, around and within a c. 3220 Ma continental core. In the central part of the terrane, tonalite sheets were intercalated with older supracrustal rocks of oceanic affinity by intrusion, thrusting and folding during the Midterhøj and Smalledal deformation phases of Berthelsen (1960). Continued tonalite injection led to a thermal maximum with granulite facies conditions at c. 2980 Ma, dated by metamorphic zircons in grey gneiss. The metamorphic maximum was contemporaneous with upright, angular folds of the Pâkitsoq deformation phase. Within a few million years followed high-grade retrogression and intrusion of two large dome-shaped tonalite-granodiorite complexes, granites s.l. derived from remobilisation of grey gneiss, and post-kinematic diorite plugs. Whereas the relative chronology of these events is firmly established from field observations, zircons from the post-granulite facies intrusions all yielded statistically indistinguishable emplacement ages of c. 2975 Ma. These results show that crustal growth occurred in several short-lived events starting at c. 3220 Ma, and that final maturation and stabilisation of new, thick continental crust took place rapidly (within c. 20 Ma) at c. 2975 Ma.


1999 ◽  
Vol 36 (7) ◽  
pp. 1207-1226 ◽  
Author(s):  
C Relf ◽  
H A Sandeman ◽  
M E Villeneuve

The Anialik River area in the northwestern Slave Province comprises two geological domains of different age and origin that were tectonically juxtaposed at ca. 2650 Ma. The older domain, the Kangguyak gneiss belt, comprises ca. 3300-2700 Ma orthogneisses and paragneisses, interpreted as the remnants of a Mesoarchean continental margin. The younger domain, the Anialik River greenstone belt, consists of ca. 2680 Ma mafic to felsic volcanic rocks interpreted to have formed in an ensimatic island-arc setting. Structural and geochronological evidence suggest collision of the two domains began around 2650 Ma in a transpressive regime that involved oblique (sinistral) subduction of the greenstone belt beneath the Kangguyak domain along the Tokhokatak shear zone. Displacement continued until at least ca. 2600 Ma, when late, two-mica granites intruded along and were deformed in the shear zone. Following ca. 2600 Ma, rocks in both domains and along the fault cooled rapidly to about 350°C. Strongly overprinted muscovite spectra and the young ages for biotite throughout the region imply that a thermal event reset all biotites (but not muscovite) at ca. 2000-1900 Ma, possibly associated with crustal thickening associated with Wopmay (Calderian) orogenesis. The tectonic history of the Anialik River area is significantly different from that documented in the south-central part of the Slave Province, suggesting the Kangguyak domain is a distinct fragment of continental crust that accreted independently from continental crust in the southern Slave Province.


2014 ◽  
Vol 6 (1.3) ◽  
pp. 1-73 ◽  
Author(s):  
Daniele Castelli ◽  
Roberto Compagnoni ◽  
Bruno Lombardo ◽  
Samuele Angiboust ◽  
Gianni Balestro ◽  
...  
Keyword(s):  

Author(s):  
Henrik Rasmussen ◽  
Lars Frimodt Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, H., & Frimodt Pedersen, L. (1999). Stratigraphy, structure and geochemistry of Archaean supracrustal rocks from Oqaatsut and Naajaat Qaqqaat, north-east Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 65-78. https://doi.org/10.34194/ggub.v181.5114 _______________ Two Archaean supracrustal sequences in the area north-east of Disko Bugt, c. 1950 and c. 800 m in thickness, are dominated by pelitic and semipelitic mica schists, interlayered with basic metavolcanic rocks. A polymict conglomerate occurs locally at the base of one of the sequences. One of the supracrustal sequences has undergone four phases of deformation; the other three phases. In both sequences an early phase, now represented by isoclinal folds, was followed by north-west-directed thrusting. A penetrative deformation represented by upright to steeply inclined folds is only recognised in one of the sequences. Steep, brittle N–S and NW–SE striking faults transect all rock units including late stage dolerites and lamprophyres. Investigation of major- and trace-element geochemistry based on discrimination diagrams for tectonic setting suggests that both metasediments and metavolcanic rocks were deposited in an environment similar to a modern back-arc setting.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document