Adaptive evolution and functional divergence of pepsin gene family

Gene ◽  
2004 ◽  
Vol 333 ◽  
pp. 81-90 ◽  
Author(s):  
Vincenzo Carginale ◽  
Francesca Trinchella ◽  
Clemente Capasso ◽  
Rosaria Scudiero ◽  
Marilisa Riggio ◽  
...  
2021 ◽  
Author(s):  
Qinguo Wei ◽  
Yuehuan Dong ◽  
Guolei Sun ◽  
Xibao Wang ◽  
Xiaoyang Wu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


2021 ◽  
Vol 57 (6) ◽  
pp. 1310-1321
Author(s):  
Hai-Jing Liu ◽  
Zhi-Ling Yang ◽  
Lin-Ling Ren ◽  
Yi-Ming Wang ◽  
Xin Wang ◽  
...  

2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2004 ◽  
Vol 59 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Gabriela Aguileta ◽  
Joseph P. Bielawski ◽  
Ziheng Yang

2018 ◽  
Vol 5 (7) ◽  
pp. 171463 ◽  
Author(s):  
Yunpeng Cao ◽  
Shumei Li ◽  
Yahui Han ◽  
Dandan Meng ◽  
Chunyan Jiao ◽  
...  

In plants, plant fructokinases (FRKs) are considered to be the main gateway of fructose metabolism as they can phosphorylate fructose to fructose-6-phosphate. Chinese white pears ( Pyrus bretschneideri ) are one of the popular fruits in the world market; sugar content is an important factor affecting the quality of the fruit. We identified 49 FRKs from four Rosaceae species; 20 of these sequences were from Chinese white pear. Subsequently, phylogenic relationship, gene structure and micro-collinearity were analysed. Phylogenetic and exon–intron analysis classified these FRK s into 10 subfamilies, and it was aimed to further reveal the variation of the gene structure and the evolutionary relationship of this gene family. Remarkably, gene expression patterns in different tissues or different development stages of the pear fruit suggested functional redundancy for PbFRKs derived from segmental duplication or genome-wide duplication and sub-functionalization for some of them. Additionally, PbFRK11 , PbFRK13 and PbFRK16 were found to play important roles in regulating the sugar content in the fruit. Overall, this study provided important insights into the evolution of the FRK gene family in four Rosaceae species, and highlighted its roles in both pear tissue and fruits. Results presented here provide the appropriate candidate of PbFRK s that might contribute to fructose efflux in the pear fruit.


Sign in / Sign up

Export Citation Format

Share Document