Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization

Gene ◽  
2013 ◽  
Vol 514 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Kang Wei ◽  
Liyuan Wang ◽  
Hao Cheng ◽  
Chengcai Zhang ◽  
Chunlei Ma ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107201 ◽  
Author(s):  
Kang Wei ◽  
Li-Yuan Wang ◽  
Li-Yun Wu ◽  
Cheng-Cai Zhang ◽  
Hai-Lin Li ◽  
...  

HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1463-1467 ◽  
Author(s):  
Benjamin E. Deloso ◽  
Anders J. Lindström ◽  
Frank A. Camacho ◽  
Thomas E. Marler

The influences of indole-3-butyric acid (IBA) concentrations of 0–30 mg·g−1 on the success and speed of adventitious root development of Zamia furfuracea L.f. and Zamia integrifolia L.f. stem cuttings were determined. Root formation success for both species was greater than 95%. The IBA concentrations did not influence the speed of root development for Z. furfuracea, but the Z. integrifolia cuttings that received IBA concentration of 3 mg·g−1 generated adventitious roots more slowly than the cuttings in the control group. The ending dry weights of the stems, leaves, and roots were not influenced by IBA concentration for either species. Our results indicated that adventitious root formation on stem cuttings of these two Zamia species is successful without horticultural application of IBA. Additional IBA studies are needed on the other 300+ cycad species, especially those that are in a threatened category.


HortScience ◽  
2004 ◽  
Vol 39 (3) ◽  
pp. 533-534 ◽  
Author(s):  
Sezai Ercisli ◽  
Ahmet Esitken ◽  
Fikrettin Sahin

During Fall and Winter 1999-2000 and 2000-2001, a study was conducted to evaluate the effects of exogenous IBA application (0, 2000, or 4000 ppm) and inoculation with Agrobacterium rubi (strains A1, A16, or A18) alone or in combination with each bacterial strain on rooting of hardwood stem cuttings of two rose selections (ERS 14, Rosa canina, and ERS 15, Rosa dumalis). Treatments of hardwood stem cuttings with IBA, bacteria alone and in combination with IBA were found to promote rooting. The highest rooting percentage was obtained among ERS 14 cuttings when treated with 4000 ppm IBA plus A. rubi A16. However, optimal rooting of ERS 15 was obtained when treated with 2000 ppm IBA plus A. rubi A18. Better rooting was observed in thornless ERS 15 genotype than in thorny ERS 14 genotype in both years. Chemical name used: 1H, indole-3-butyric acid (IBA).


2019 ◽  
Vol 20 (19) ◽  
pp. 4817 ◽  
Author(s):  
Kang Wei ◽  
Li Ruan ◽  
Liyuan Wang ◽  
Hao Cheng

Adventitious root (AR) formation is essential for the successful propagation of Camellia sinensis and auxins play promotive effects on this process. Nowadays, the mechanism of auxin-induced AR formation in tea cuttings is widely studied. However, a lack of global view of the underlying mechanism has largely inhibited further studies. In this paper, recent advances including endogenous hormone changes, nitric oxide (NO) and hydrogen peroxide (H2O2) signals, secondary metabolism, cell wall reconstruction, and mechanisms involved in auxin signaling are reviewed. A further time course analysis of transcriptome changes in tea cuttings during AR formation is also suggested to deepen our understanding. The purpose of this paper is to offer an overview on the most recent developments especially on those key aspects affected by auxins and that play important roles in AR formation in tea plants.


Sign in / Sign up

Export Citation Format

Share Document