scholarly journals Endogenous nitric oxide and hydrogen peroxide detection in indole-3-butyric acid-induced adventitious root formation in Camellia sinensis

2018 ◽  
Vol 17 (10) ◽  
pp. 2273-2280 ◽  
Author(s):  
Kang WEI ◽  
Li-yuan WANG ◽  
Li RUAN ◽  
Cheng-cai ZHANG ◽  
Li-yun WU ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107201 ◽  
Author(s):  
Kang Wei ◽  
Li-Yuan Wang ◽  
Li-Yun Wu ◽  
Cheng-Cai Zhang ◽  
Hai-Lin Li ◽  
...  

2014 ◽  
Vol 12 (2) ◽  
pp. 477 ◽  
Author(s):  
Ali Tehranifar ◽  
Saeed Mahmoody Tabar ◽  
Yahya Selahvarzi ◽  
Ahmad Balandary ◽  
Mahdiyeh Kharrazi

Plant Science ◽  
2008 ◽  
Vol 174 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Juan Carlos Campos-Cuevas ◽  
Ramón Pelagio-Flores ◽  
Javier Raya-González ◽  
Alfonso Méndez-Bravo ◽  
Randy Ortiz-Castro ◽  
...  

HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1463-1467 ◽  
Author(s):  
Benjamin E. Deloso ◽  
Anders J. Lindström ◽  
Frank A. Camacho ◽  
Thomas E. Marler

The influences of indole-3-butyric acid (IBA) concentrations of 0–30 mg·g−1 on the success and speed of adventitious root development of Zamia furfuracea L.f. and Zamia integrifolia L.f. stem cuttings were determined. Root formation success for both species was greater than 95%. The IBA concentrations did not influence the speed of root development for Z. furfuracea, but the Z. integrifolia cuttings that received IBA concentration of 3 mg·g−1 generated adventitious roots more slowly than the cuttings in the control group. The ending dry weights of the stems, leaves, and roots were not influenced by IBA concentration for either species. Our results indicated that adventitious root formation on stem cuttings of these two Zamia species is successful without horticultural application of IBA. Additional IBA studies are needed on the other 300+ cycad species, especially those that are in a threatened category.


Author(s):  
Durgesh Kumar Tripathi ◽  
Padmaja Rai ◽  
Gea Guerriero ◽  
Shivesh Sharma ◽  
Francisco J Corpas ◽  
...  

Abstract Arsenic (As) negatively affects plant development. Using rice as a model, this study evaluates how the application of silicon (10 µM Si) can favour the formation of adventitious roots under arsenate stress (50 µM As V) as a mechanism to mitigate its negative effects. Indeed, the simultaneous application of As V and Si up-regulated the expression of genes involved in nitric oxide (NO) metabolism (OsNOA1), cell cycle progression (G2-M, OsCDKA1), auxin (IAA, indole-3-acetic acid) biosynthesis (OsYUCCA1 and OsTAA1) and transport (OsPIN1, OsPIN5 and OsPIN10) and Si uptake (OsLsi1 and OsLsi2), which accompanied adventitious root formation. Furthermore, Si triggered the expression and activity of MDHAR and DHAR involved in ascorbate recycling. The treatment with L-NAME, an inhibitor of NO generation, significantly suppressed adventitious root formation, even in the presence of Si; however, supplying NO in the growth media rescued its effects. The data obtained suggest that both NO and IAA are essential for Si-mediated adventitious root formation under As V stress. Interestingly, TIBA (a polar auxin transport inhibitor) suppressed adventitious root formation, even in the presence of Si and SNP (an NO donor), suggesting that Si is involved in a mechanism whereby a cellular signal is triggered and requires NO formation first and, then, IAA.


Sign in / Sign up

Export Citation Format

Share Document