Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages

2015 ◽  
Vol 38 (2) ◽  
pp. 145-162 ◽  
Author(s):  
Peng Wang ◽  
Lingling Ma ◽  
Ya Li ◽  
Shu’an Wang ◽  
Linfang Li ◽  
...  
HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1463-1467 ◽  
Author(s):  
Benjamin E. Deloso ◽  
Anders J. Lindström ◽  
Frank A. Camacho ◽  
Thomas E. Marler

The influences of indole-3-butyric acid (IBA) concentrations of 0–30 mg·g−1 on the success and speed of adventitious root development of Zamia furfuracea L.f. and Zamia integrifolia L.f. stem cuttings were determined. Root formation success for both species was greater than 95%. The IBA concentrations did not influence the speed of root development for Z. furfuracea, but the Z. integrifolia cuttings that received IBA concentration of 3 mg·g−1 generated adventitious roots more slowly than the cuttings in the control group. The ending dry weights of the stems, leaves, and roots were not influenced by IBA concentration for either species. Our results indicated that adventitious root formation on stem cuttings of these two Zamia species is successful without horticultural application of IBA. Additional IBA studies are needed on the other 300+ cycad species, especially those that are in a threatened category.


2020 ◽  
Author(s):  
Haishan An ◽  
Jiaying Zhang ◽  
Fangjie Xu ◽  
Shuang Jiang ◽  
Xueying Zhang

Abstract Background: Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation.Results: Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes (ARFs and SAURs), 13 transcription factors (LOB domain-containing protein (LBDs)), 6 auxin transporters (AUX22, LAX3/5 and PIN-like 6 (PIL6s)) and 6 rooting-associated genes (root meristem growth factor 9 (RGF9), lateral root primordium 1 (LRP1s), and dormancy-associated protein homologue 3 (DRMH3)). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation.Conclusions: The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107201 ◽  
Author(s):  
Kang Wei ◽  
Li-Yuan Wang ◽  
Li-Yun Wu ◽  
Cheng-Cai Zhang ◽  
Hai-Lin Li ◽  
...  

2020 ◽  
Author(s):  
Haishan An ◽  
Jiaying Zhang ◽  
Fangjie Xu ◽  
Shuang Jiang ◽  
Xueying Zhang

Abstract Background: Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation. Results: Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes ( ARFs and SAURs ), 13 transcription factors ( LOB domain-containing protein ( LBD s)), 6 auxin transporters ( AUX22 , LAX3/5 and PIN-like 6 ( PIL6s )) and 6 rooting-associated genes ( root meristem growth factor 9 ( RGF9 ), lateral root primordium 1 ( LRP1s ), and dormancy-associated protein homologue 3 ( DRMH3 )). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation. Conclusions: The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.


2019 ◽  
Author(s):  
Haishan An ◽  
Jiaying Zhang ◽  
Fangjie Xu ◽  
Shuang Jiang ◽  
Xueying Zhang

Abstract Background Propagation of cuttings was mostly used in various plant species including blueberry, the special root characteristics of blueberry usually resulted in a difficulty in adventitious root (AR) formation. The AR formation was influenced by various factors, of which auxin was considered to play a center role, however little is known of the related regulative mechanisms. In this study, transcriptome analysis using RNA_seq from the stem of green cuttings of southern highbush blueberry 'Biloxi' was performed to discover candidate genes associated with AR formation.Results Rooting phenotypes, especially rooting rate, was significantly promoted by exogenous auxin IBA application. The adventitious root primordium initiation (rpi) began to be formed at 14 day (d) after cutting, developed into root primordium (rp) at 21d, finally the rp further developed to mature AR at 28d. Higher IAA and lower ABA and zeatin might facilitate the AR formation and development. A time series transcriptome analysis indentified 14970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 up-regulated and 7503 down-regulated genes, respectively. Of these, about 35 candidate DEGs involved in auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes ARFs and SAURs , 13 transcription factors LOB domain-containing protein ( LBD s), 6 auxin transporter AUX22 , LAX3/5 and PIN-like 6s ( PIL6s ) and 6 rooting-associated genes root meristem growth factor 9 ( RGF9 ), lateral root primordium 1 ( LRP1s ), dormancy-associated protein homolog 3 ( DRMH3 ). All these identified DEGs were highly up-regulated in certain AR developed stage, indicating their potential roles in blueberry AR formation.Conclusions The transcriptome profiling indicated candidate genes or major regulative factors that influence adventitious root formation in blueberry, and provided a comprehensive understanding of rooting mechanism of the auxin-induced AR formation from blueberry green cuttings.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 499D-499
Author(s):  
E.K. Gubrium ◽  
D.G. Clark ◽  
H.J. Klee ◽  
T.A. Nell ◽  
J.E. Barrett

We are studying the horticultural performance of two model plant systems that carry a mutant gene that confers ethylene-insensitivity: Never Ripe tomatoes and petunia plants transformed with the mutant etr1-1 gene isolated from Arabidopsis thaliana. Having two model systems to compare side-by-side allows us to determine with greater certainty ethylene's role at different developmental stages. Presence of the mutant etr1-1 gene in transgenic petunias was determined using three techniques: PCR analysis, the seedling triple response assay (inhibition of stem elongation, radial swelling of stem and roots, and an exaggerated apical hook when grown in the dark and in the presence of ethylene), and the flower wilting response to pollination, which is known to be induced by ethylene. Flowers from ethylene-insensitive petunias took almost four times as long to wilt after pollination as wild-type plants. It is well known that fruit ripening in Never Ripe tomato is inhibited, and a similar delayed fruit ripening phenotype is observed in petunia plants transformed with etr1-1. In an effort to maintain ethylene-insensitive petunia plants by vegetative propagation, we observed that the rate of adventitious root formation was much lower with transgenic plants than in wild-type plants. In subsequent experiments on adventitious root formation in Never Ripe tomato, we observed the same result. Therefore, while ethylene-insensitive tomato and petunia plants appear phenotypically normal for many characters, other factors are altered by the presence of this mutation. The fact that these changes are present in two model systems helps to define the role of ethylene perception in plant growth and reproduction.


HortScience ◽  
2004 ◽  
Vol 39 (3) ◽  
pp. 533-534 ◽  
Author(s):  
Sezai Ercisli ◽  
Ahmet Esitken ◽  
Fikrettin Sahin

During Fall and Winter 1999-2000 and 2000-2001, a study was conducted to evaluate the effects of exogenous IBA application (0, 2000, or 4000 ppm) and inoculation with Agrobacterium rubi (strains A1, A16, or A18) alone or in combination with each bacterial strain on rooting of hardwood stem cuttings of two rose selections (ERS 14, Rosa canina, and ERS 15, Rosa dumalis). Treatments of hardwood stem cuttings with IBA, bacteria alone and in combination with IBA were found to promote rooting. The highest rooting percentage was obtained among ERS 14 cuttings when treated with 4000 ppm IBA plus A. rubi A16. However, optimal rooting of ERS 15 was obtained when treated with 2000 ppm IBA plus A. rubi A18. Better rooting was observed in thornless ERS 15 genotype than in thorny ERS 14 genotype in both years. Chemical name used: 1H, indole-3-butyric acid (IBA).


Sign in / Sign up

Export Citation Format

Share Document