Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique

Geoderma ◽  
2012 ◽  
Vol 183-184 ◽  
pp. 41-48 ◽  
Author(s):  
A.H. Cambule ◽  
D.G. Rossiter ◽  
J.J. Stoorvogel ◽  
E.M.A. Smaling
Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115387
Author(s):  
Tiago G. Morais ◽  
Camila Tufik ◽  
Ana E. Rato ◽  
Nuno R. Rodrigues ◽  
Ivo Gama ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 1747 ◽  
Author(s):  
Yi Liu ◽  
Zhou Shi ◽  
Ganlin Zhang ◽  
Yiyun Chen ◽  
Shuo Li ◽  
...  

Ancillary data, such as soil type, may improve the visible and near-infrared (vis-NIR) estimation of soil organic carbon (SOC); however, they require data collection or expert knowledge. The application of a national soil spectral library to local SOC estimations usually requires soil type information, because the relationships between vis-NIR spectra and SOC from different populations may vary. Using 515 samples of five soil types (genetic soil classification of China, GSCC) from the Chinese soil spectral library (CSSL), we compared three strategies in the vis-NIR estimation of SOC. Different regression models were calibrated using the entire dataset (Strategy I, without using soil type as ancillary data) and the subsets stratified by soil type from CSSL as ancillary data (strategies II and III). In Strategy II, the subsets were stratified by soil type from the CSSL for validation. In Strategy III, the subsets were stratified by spectrally derived soil type for validation. The results showed that 86.72% of the samples were successfully discriminated for the soil types by using the vis-NIR spectra. The coefficients of determination in the prediction ( R p 2 ) of SOC estimation by strategies I, II, and III were 0.74, 0.83, and 0.82, respectively. The stratified calibration strategies (strategies II and III) improved the vis-NIR estimation of SOC. The misclassification of the soil type in the application of Strategy III slightly affected the SOC estimations. Nevertheless, this strategy is inexpensive and beneficial when expert knowledge on soil classification is lacking. We concluded that vis-NIR spectroscopy could be applied to distinguish some soil types in terms of GSCC, which further provided essential and easily accessible ancillary data for the application of stratified calibration strategies in the vis-NIR estimation of SOC.


Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 46-56 ◽  
Author(s):  
A.H. Cambule ◽  
D.G. Rossiter ◽  
J.J. Stoorvogel ◽  
E.M.A. Smaling

2014 ◽  
Vol 7 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
M. Nussbaum ◽  
A. Papritz ◽  
A. Baltensweiler ◽  
L. Walthert

Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 261 ◽  
Author(s):  
Maria Marques ◽  
Ana Álvarez ◽  
Pilar Carral ◽  
Iris Esparza ◽  
Blanca Sastre ◽  
...  

Contents of soil organic carbon (SOC), gypsum, CaCO3, and quartz, among others, were analyzed and related to reflectance features in visible and near-infrared (VIS/NIR) range, using partial least square regression (PLSR) in ParLes software. Soil samples come from a sloping olive grove managed by frequent tillage in a gypsiferous area of Central Spain. Samples were collected in three different layers, at 0–10, 10–20 and 20–30 cm depth (IPCC guidelines for Greenhouse Gas Inventories Programme in 2006). Analyses were performed by C Loss-On-Ignition, X-ray diffraction and water content by the Richards plates method. Significant differences for SOC, gypsum, and CaCO3 were found between layers; similarly, soil reflectance for 30 cm depth layers was higher. The resulting PLSR models (60 samples for calibration and 30 independent samples for validation) yielded good predictions for SOC (R2 = 0.74), moderate prediction ability for gypsum and were not accurate for the rest of rest of soil components. Importantly, SOC content was related to water available capacity. Soils with high reflectance features held c.a. 40% less water than soils with less reflectance. Therefore, higher reflectance can be related to degradation in gypsiferous soil. The starting point of soil degradation and further evolution could be established and mapped through remote sensing techniques for policy decision making.


Sign in / Sign up

Export Citation Format

Share Document