The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soils

Geoderma ◽  
2017 ◽  
Vol 285 ◽  
pp. 27-34 ◽  
Author(s):  
Anna Ilek ◽  
Jarosław Kucza ◽  
Małgorzata Szostek
Soil Research ◽  
1979 ◽  
Vol 17 (1) ◽  
pp. 101 ◽  
Author(s):  
R Sands ◽  
EL Greacen ◽  
CJ Gerard

The mechanical strength of sandy soils under radiata pine plantations was measured with a penetrometer. Resistance to penetration was largely independent of water content in the range sampled, and was directly related to the bulk density of the soil. Soil strength at constant bulk density increased with depth owing to increase in overburden pressure and to a decrease in soil organic matter. Soil under native scrub was consistently less compact than that from adjacent radiata pine plantations on the same soil type. Soil from pasture was usually more compact in the surface 20 cm of soil than that from pine plantations, but was less compact at depth. Soil from second rotation plantations was more compact than soil on some first rotation sites, but on other sites no differences could be established. Radiata pine roots preferentially penetrated areas of lower soil strength. Root penetration was severely restricted above a critical penetration resistance of about 3000 kPa. Saturated soils were highly compacted even by light loads in a laboratory consolidometer compared to unsaturated soil. In the unsaturated condition compaction was greatest under heavy loads on soils at about 1% organic matter. Causes of the observed compaction in the field are discussed and remedial measures are suggested. Soil compaction reduced porosity but had little effect on water storage capacity. Increased organic matter at constant bulk density also reduced porosity, but greatly increased water storage capacity and unsaturated hydraulic conductivity. The importance of organic matter in maintaining a favourable structure in sandy soils and its relation to maintenance of site productivity is discussed.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1674
Author(s):  
Anna Ilek ◽  
Małgorzata Szostek ◽  
Anna Mikołajczyk ◽  
Marta Rajtar

During the last decade, tree species mixing has been widely supported as a silvicultural approach to reduce drought stress. However, little is known on the influence of tree species mixing on physical properties and the water storage capacity of forest soils (including the forest floor). Thus, the study aimed to analyze the effect of mixing pine needles and oak leaves and mixing fir needles and beech leaves on hydro-physical properties of the litter layer during laboratory tests. We used fir-beech and pine-oak litter containing various shares of conifer needles (i.e., 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%) to determine the influence of the needle admixture on bulk density, total porosity, macroporosity, water storage capacity, the amount of water stored in pores between organic debris and the degree of saturation of mixed litter compared to broadleaf litter (oak or beech). We found that the admixture of fir needles increased the bulk density of litter from 7.9% with a 5% share of needles to 55.5% with a 50% share (compared to pure beech litter), while the share of pine needles < 40% caused a decrease in bulk density by an average of 3.0–11.0% (compared to pure oak litter). Pine needles decreased the water storage capacity of litter by about 13–14% with the share of needles up to 10% and on average by 28% with the 40 and 50% shares of pine needles in the litter layer. Both conifer admixtures reduced the amount of water stored in the pores between organic debris (pine needles more than fir needles).


2010 ◽  
Vol 161 (12) ◽  
pp. 510-516 ◽  
Author(s):  
Benjamin Lange ◽  
Peter F. Germann ◽  
Peter Lüscher

In this study we investigated the significance of roots for the water storage capacity of hydromorphic forest soils in the northern Pre-Alps of Switzerland. Irrigation experiments were conducted on 1 m2 plots with high initial soil water content. A total of 67 horizons were investigated for water content variations using time domain reflectometry (TDR). The data was processed using a physically based model, which assumes gravity-driven and viscosity-controlled water flow along pore walls in the form of thin water films. The model calculates the contact length (L) between mobile water and the stationary parts of the soil water system in the horizontal plane. L characterises porosity which is effectively involved in water flow. A multiple linear regression analysis of all investigated horizons, including root density, bulk density and texture as predictors for L, demonstrated that the root density had the best explanatory value for L (R2 = 0.63). Thus, it can be assumed that increases in root density increase water storage capacity. Considering the extent of hydromorphicity in horizons, the relationship between root density and contact length was only significant in topsoils and hydromorphic subsoils. An increase of root density by 50% in hydromorphic subsoils would increase short-time water storage capacity from 0.03 to 0.05 m3/m3, while higher root densities in topsoils did not increase water storage capacities. To improve the water retention potential of flood protection forests on hydromorphic soils, we suggest promoting deep-rooting species which are able to sustain anaerobic periods in soils.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Chen ◽  
Xue-wen Lei ◽  
Han-lin Zhang ◽  
Zhi Lin ◽  
Hui Wang ◽  
...  

AbstractThe problems caused by the interaction between slopes and hydrologic environment in traffic civil engineering are very serious in the granite residual soil area of China, especially in Guangdong Province. Against the background of two heavy rainfall events occurring during a short period due to a typhoon making landfall twice or even two typhoons consecutively making landfall, laboratory model tests were carried out on the hydrological effects of the granite residual soil slope considering three vegetation types under artificial rainfall. The variation in slope surface runoff, soil moisture content and rain seepage over time was recorded during the tests. The results indicate that surface vegetation first effectively reduces the splash erosion impact of rainwater on slopes and then influences the slope hydrological effect through rainwater forms adjustment. (1) The exposed slope has weak resistance to two consecutive heavy rains, the degree of slope scouring and soil erosion damage will increase greatly during the second rainfall. (2) The multiple hindrances of the stem leaf of Zoysia japonica plays a leading role in regulating the hydrological effect of slope, the root system has little effect on the permeability and water storage capacity of slope soil, but improves the erosion resistance of it. (3) Both the stem leaf and root system of Nephrolepis cordifolia have important roles on the hydrological effect. The stem leaf can stabilize the infiltration of rainwater, and successfully inhibit the surface runoff under continuous secondary heavy rainfall. The root system significantly enhances the water storage capacity of the slope, and greatly increases the permeability of the slope soil in the second rainfall, which is totally different from that of the exposed and Zoysia japonica slopes. (4) Zoysia is a suitable vegetation species in terms of slope protection because of its comprehensive slope protection effect. Nephrolepis cordifolia should be cautiously planted as slope protection vegetation. Only on slopes with no stability issues should Nephrolepis cordifolia be considered to preserve soil and water.


2021 ◽  
Author(s):  
Harro Joseph Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Andreas Christen ◽  
Krzysztof Fortuniak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document