Modelling of sand/dust emission in Northern China from 2001 to 2014

Geoderma ◽  
2018 ◽  
Vol 330 ◽  
pp. 162-176 ◽  
Author(s):  
Heqiang Du ◽  
Tao Wang ◽  
Xian Xue ◽  
Sen Li
2000 ◽  
Vol 34 (26) ◽  
pp. 4565-4570 ◽  
Author(s):  
Jie Xuan ◽  
Guoliang Liu ◽  
Ke Du

2021 ◽  
Vol 83 ◽  
pp. 133-146
Author(s):  
F Zhang ◽  
J Wang ◽  
X Zou ◽  
R Mao ◽  
DY Gong ◽  
...  

Wind erosion is largely determined by wind erosion climatic erosivity. In this study, we examined changes in wind erosion climatic erosivity during 4 seasons across northern China from 1981-2016 using 2 models: the wind erosion climatic erosivity of the Wind Erosion Equation (WEQ) model and the weather factor from the Revised Wind Erosion Equation (RWEQ) model. Results showed that wind erosion climatic erosivity derived from the 2 models was highest in spring and lowest in winter with high values over the Kumtag Desert, the Qaidam Basin, the boundary between Mongolia and China, and the Hulunbuir Sandy Land. In spring and summer, wind erosion climatic erosivity showed decreasing trends in whole of northern China from 1981-2016, whereas there was an increasing trend in wind erosion climatic erosivity over the Gobi Desert from 1992-2011. For the weather factor of the RWEQ model, the difference between northern Northwest China and the Gobi Desert and eastern-northern China was much larger than that of the wind erosion climatic erosivity of the WEQ model. In addition, in contrast to a decreasing trend in the weather factor of the RWEQ model over southern Northwest China during spring and summer from 1981-2016, the wind erosion climatic erosivity of the WEQ model showed a decreasing trend for 1981-1992 and an increasing trend for 1992-2011 over southern Northwest China. According to a comparison between dust emission and wind erosion climatic erosivity, the 2 models have the ability to project changes in future wind erosion in northern China.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 593
Author(s):  
Sang-Boom Ryoo ◽  
Jinwon Kim ◽  
Jeong Hoon Cho

Recently, the Korea Meteorological Administration developed Asian Dust Aerosol Model version 3 (ADAM3) by incorporating additional parameters into ADAM2, including anthropogenic particulate matter (PM) emissions, modification of dust generation by considering real-time surface vegetation, and assimilations of surface PM observations and satellite-measured aerosol optical depth. This study evaluates the performance of ADAM3 in identifying Asian dust days over the dust source regions in Northern China and their variations according to regions and soil types by comparing its performance with ADAM2 (from January to June of 2017). In all regions the performance of ADAM3 was markedly improved, especially for Northwestern China, where the threat score (TS) and the probability of detection (POD) improved from 5.4% and 5.5% to 30.4% and 34.4%, respectively. ADAM3 outperforms ADAM2 for all soil types, especially for the sand-type soil for which TS and POD are improved from 39.2.0% and 50.7% to 48.9% and 68.2%, respectively. Despite these improvements in regions and surface soil types, Asian dust emission formulas in ADAM3 need improvement for the loess-type soils to modulate the overestimation of Asian dust events related to anthropogenic emissions in the Huabei Plain and Manchuria.


2008 ◽  
Vol 8 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Y. Q. Yang ◽  
Q. Hou ◽  
C. H. Zhou ◽  
H. L. Liu ◽  
Y. Q. Wang ◽  
...  

Abstract. This paper introduces a definition of sand/dust storm process as a new standard and idea of sand/dust storm (SDS) groups a number of SDS-events in Northeast Asia. Based on the meteorological data from WMO/GOS network, 2456 Chinese surface stations and NCEP-NCAR reanalysis, the sand/dust storm processes in Northeast Asia in spring 2000–2006 are investigated. And the evolutions of anomalies of general circulation in the troposphere are analyzed by comparing the spring having most and least occurrences of SDS in year 2006 and 2003. Associated with the noticeably increased occurrence of SDS processes in spring 2006, the anomalies in 3-D structure of general circulation especially in the mid-and high latitudes of the Northen Hemisphere (NH) are revealed. The transition period from the winter of 2005 to spring 2006 has witnessed a fast-developed high center over the circumpolar vortex area in the upper troposphere, which pushes the polar vortex more southwards to mid-latitudes with a more extensive area over the east NH. In spring 2006, there are the significant circulation anomalies in the middle troposphere from the Baikal Lake to northern China with a stronger southward wind anomaly over Northeast Asia. Compared with a normal year, stronger meridional wind with a southward wind anomaly also in the lower troposphere prevail over the arid and semiarid regions in Mongolia and northern China during spring 2006. The positive anomalies of surface high pressure registered an abnormal high of 4–10 hPa in the Tamil Peninsular make a stronger cold air source for the repeated cold air outbreak across the desert areas in spring 2006 resulting in the most frequent SDS seasons in the last 10 years in Northeast Asia.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Jikang Wang ◽  
Bihui Zhang ◽  
Hengde Zhang ◽  
Cong Hua ◽  
Linchang An ◽  
...  

Northern China experienced a severe sand and dust storm (SDS) on 14/15 March 2021. It was difficult to simulate this severe SDS event accurately. This study compared the performances of three dust-emission schemes on simulating PM10 concentration during this SDS event by implementing three vertical dust flux parameterizations in the Comprehensive Air-Quality Model with Extensions (CAMx) model. Additionally, a statistical gusty-wind model was implemented in the dust-emission scheme, and it was used to quantify the gusty-wind contribution to dust emissions and peak PM10 concentration. As a result, the LS scheme (Lu and Shao 1999) produced the minimum errors for peak PM10 concentrations, the MB scheme (Marticorena and Bergametti 1995) underestimated the PM10 concentrations by 70–90%, and the KOK scheme (Kok et al. 2014) overestimated PM10 concentrations by 10–50% in most areas. The gusty-wind model could reasonably reproduce the probability density function of 2-min wind speeds. There were 5–40% more dust-emission flux and 5–40% more peak PM10 concentrations generated by the gusty wind than the hourly wind in the dust-source regions. The increase of peak PM10 concentration caused by gusty wind in the non-dust-source regions was higher than in the dust-source regions, with 10–50%. Implementing the gusty-wind model could help improve the LS scheme’s performance in simulating PM10 concentrations of this severe SDS event. More work is still needed to investigate the reliability of the gusty-wind model and LS scheme on various SDS events.


Author(s):  
Irina Sokolik

There is scientific consensus that human activities have been altering the atmospheric composition and are a key driver of global climate and environmental changes since pre-industrial times (IPCC, 2013). It is a pressing priority to understand the Earth system response to atmospheric aerosol input from diverse sources, which so far remain one of the largest uncertainties in climate studies (Boucher et al., 2014; Forster et al., 2007). As the second most abundant component (in terms of mass) of atmospheric aerosols, mineral dust exerts tremendous impacts on Earth’s climate and environment through various interaction and feedback processes. Dust can also have beneficial effects where it deposits: Central and South American rain forests get most of their mineral nutrients from the Sahara; iron-poor ocean regions get iron; and dust in Hawaii increases plantain growth. In northern China as well as the midwestern United States, ancient dust storm deposits known as loess are highly fertile soils, but they are also a significant source of contemporary dust storms when soil-securing vegetation is disturbed. Accurate assessments of dust emission are of great importance to improvements in quantifying the diverse dust impacts.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 339
Author(s):  
Chaowei Zhou ◽  
Xiaoming Feng ◽  
Yichu Huang ◽  
Xiaofeng Wang ◽  
Xinrong Zhang

Extensive ecosystem restoration is increasingly seen as an essential practice to mitigate climate change and protect the ecological environment. However, the indirect impact of surface vegetation improvement on the regional climate, such as the climate effect of sand-dust events reduction, has never been evaluated. Here, we estimated the feedback of temperature and precipitation on the change of sand-dust events, arising from the vegetation growth with ecological restoration, using a simple theoretical framework with a series of scenario simulations based on a regional climate model (RegCM). The results showed that revegetation reduced dust emissions, with a contribution rate of approximately 40.15%. With the combined influence of ecological restoration and climate change, the cooling effect of sand-dust events strengthened with the increase in the intensity of sand-dust events, which is mainly caused by the strong absorption of shortwave radiation by the atmosphere. The response of precipitation was uncertain because of tropospheric circulation feedback and shortwave radiation absorption. Our results also indicate that changes in sand-dust events caused by vegetation restoration play important roles in shaping the future climate near the arid and semi-arid regions of northern China. The climatic effects of sand-dust events should be included in assessing ecological restoration impacts to promote sustainable development and enhance our understanding of climate change.


Sign in / Sign up

Export Citation Format

Share Document