Mineral Dust Cycle

Author(s):  
Irina Sokolik

There is scientific consensus that human activities have been altering the atmospheric composition and are a key driver of global climate and environmental changes since pre-industrial times (IPCC, 2013). It is a pressing priority to understand the Earth system response to atmospheric aerosol input from diverse sources, which so far remain one of the largest uncertainties in climate studies (Boucher et al., 2014; Forster et al., 2007). As the second most abundant component (in terms of mass) of atmospheric aerosols, mineral dust exerts tremendous impacts on Earth’s climate and environment through various interaction and feedback processes. Dust can also have beneficial effects where it deposits: Central and South American rain forests get most of their mineral nutrients from the Sahara; iron-poor ocean regions get iron; and dust in Hawaii increases plantain growth. In northern China as well as the midwestern United States, ancient dust storm deposits known as loess are highly fertile soils, but they are also a significant source of contemporary dust storms when soil-securing vegetation is disturbed. Accurate assessments of dust emission are of great importance to improvements in quantifying the diverse dust impacts.

2019 ◽  
Vol 19 (23) ◽  
pp. 14657-14676 ◽  
Author(s):  
Laurent Menut ◽  
Paolo Tuccella ◽  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Marco Gaetani

Abstract. The aerosol direct and indirect effects are studied over west Africa in the summer of 2016 using the coupled WRF-CHIMERE regional model including aerosol–cloud interaction parameterization. First, a reference simulation is performed and compared with observations acquired during the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) field campaign which took place in June and July 2016. Sensitivity experiments are also designed to gain insights into the impact of the aerosols dominating the atmospheric composition in southern west Africa (one simulation with halved anthropogenic emissions and one with halved mineral dust emissions). The most important effect of aerosol–cloud interactions is found for the mineral dust scenario, and it is shown that halving the emissions of mineral dust decreases the 2 m temperature by 0.5 K and the boundary layer height by 25 m on a monthly average (July 2016) and over the Saharan region. The presence of dust aerosols also increases (decreases) the shortwave (longwave) radiation at the surface by 25 W m−2. It is also shown that the decrease of anthropogenic emissions along the coast has an impact on the mineral dust load over west Africa by increasing their emissions in the Saharan region. It is due to a mechanism where particulate matter concentrations are decreased along the coast, imposing a latitudinal shift of the monsoonal precipitation and, in turn, an increase of the surface wind speed over arid areas, inducing more mineral dust emissions.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 708 ◽  
Author(s):  
Mathieu Lachatre ◽  
Gilles Foret ◽  
Benoit Laurent ◽  
Guillaume Siour ◽  
Juan Cuesta ◽  
...  

Air pollution in Chinese megacities has reached extremely hazardous levels, and human activities are responsible for the emission or production of large amounts of particulate matter (PM). In addition to PM from anthropogenic sources, natural phenomena, such as dust storms over Asian deserts, may also emit large amounts of PM, which lead episodically to poor air quality over Chinese megacities. In this paper, we quantify the degradation of air quality by dust over Beijing, Chengdu and Shanghai megacities using the three dimensions (3D) chemistry transport model CHIMERE, which simulates dust emission and transport online. In the first part of our work, we evaluate dust emissions using Moderate Resolution Imaging Spectroradiometer (MODIS) and Infrared Atmospheric Sounding Interferometer (IASI) satellite observations of aerosol optical depth, respectively, in the visible and the thermal infrared over source areas. PM simulations were also evaluated compared to surface monitoring stations. Then, mineral dust emissions and their impacts on particle composition of several Chinese megacities were analyzed. Dust emissions and transport over China were simulated during three years (2011, 2013 and 2015). Annual dust contributions to the PM 10 budget over Beijing, Chengdu and Shanghai were evaluated respectively as 6.6%, 9.5% and 9.3%. Dust outbreaks largely contribute to poor air quality events during springtime. Indeed it was found that dust significantly contribute for 22%, 52% and 43% of spring PM 10 events (for Beijing, Chengdu and Shanghai respectively).


2020 ◽  
Author(s):  
Rong Tian ◽  
Xiaoyan Ma ◽  
Jianqi Zhao

Abstract. Mineral dust plays a significant role in climate change and air quality, but large uncertainties remain in terms of dust emission prediction. In this study, we improved the treatments of dust emission process in a Global 3-D Chemical Transport model (GEOS-Chem) v12.6.0, by incorporating the geographical variation of aerodynamic roughness length (Z0), smooth roughness length (Z0s), soil texture, introducing Owen effect and Lu and Shao (1999) formulation of sandblasting efficiency α. To investigate the impact of the modifications incorporated in the model, several sensitivity simulations were performed for a severe dust storm during March 27, 2015 to April 2, 2015 over northern China. Results show that simulated threshold friction velocity is very sensitive to the updated Z0 and Z0s field, with the relative difference ranging from 10 % to 60 % compared to the original model with uniform value. An inclusion of Owen effect leads to an increase in surface friction velocity, which mainly occurs in the arid and semi-arid regions of northwest China. The substitution of fixed value of α assumed in original scheme with one varying with friction velocity and soil texture based on observations reduces α by 50 % on average, especially over regions with sand texture. Comparisons of sensitivity simulations and measurements show that the revised scheme with the implement of updates provides more realistic threshold friction velocities and PM10 mass concentrations. The performance of the improved model has been evaluated against surface PM10 observations as well as MODIS aerosol optical depth (AOD) values, showing that the spatial and temporal variation of mineral dust are better captured by the revised scheme. Due to the inclusion of the improvement, average PM10 concentrations at observational sites are more comparable to the observations, and the average mean bias (MB) and normalized mean bias (NMB) values are reduced from −196.29 μg m−3 and −52.79 % to −47.72 μg −3 and −22.46 % respectively. Our study suggests that the erodibility factor, sandblasting efficiency and soil-related properties which are simply assumed in the empirical scheme may lack physical mechanism and spatial-temporal representative. Further study and measurements should be conducted to obtain more realistic and detailed map of these parameters in order to improve dust representation in the model.


Author(s):  
D. Debinski

The last decade has witnessed intensifying, abrupt global climate change. Despite this impact, we know little about when, what, and how changes occur. Most climate research is limited to studies of the abiotic environment, focusing on atmospheric composition and carbon fluxes. These studies fail to provide adequate indicators of climate changes and their impact on habitats and species. Recent and intensifying ecological changes have generated interest in (Root et al. 2003, Thomas et al. 2004), and the need for tools that can help to prepare for global climate shifts. Changes in ecological (biotic) communities are excellent indicators of climate shifts, providing models to predict changes over time. Montane meadows, defined here as persistently non­forested habitats in mountain ecosystems, make up a small percentage of terrestrial habitats, but they are likely to exhibit changes much more rapidly than most other areas. These meadows are arrayed along a hydrological gradient (from hydric to mesic to xeric) and inhabited by short-lived plants and highly mobile animal species that can exhibit quick changes in distribution patterns relative to environmental changes. Thus, they can provide an early warning system for other ecosystems across the globe. Currently, the extent and range of climatic changes that will occur in montane meadows are unknown.


2021 ◽  
Vol 21 (6) ◽  
pp. 4319-4337
Author(s):  
Rong Tian ◽  
Xiaoyan Ma ◽  
Jianqi Zhao

Abstract. Mineral dust plays a significant role in climate change and air quality, but large uncertainties remain in terms of dust emission prediction. In this study, we improved treatment of the dust emission process in a global 3-D chemical transport model (GEOS-Chem v12.6.0), by incorporating the geographical variation of aerodynamic roughness length (Z0), smooth roughness length (Z0s) and soil texture and by introducing the Owen effect and the formulation of the sandblasting efficiency α by Lu and Shao (1999). To investigate the impact of the modifications incorporated in the model, several sensitivity simulations were performed for a severe dust storm during 27 March to 2 April 2015 over northern China. Results show that simulated threshold friction velocity is very sensitive to the updated Z0 and Z0s field, with the relative difference ranging from 10 % to 60 % compared to the original model with a uniform value. The inclusion of the Owen effect leads to an increase in surface friction velocity, which mainly occurs in the arid and semi-arid regions of northwest China. The substitution of a fixed value of α assumed in the original scheme with one varying with friction velocity and soil texture based on observations reduces α by 50 % on average, especially over regions with sand texture. Comparisons of sensitivity simulations and measurements show that the revised scheme with the implementation of updates provides more realistic threshold friction velocities and PM10 mass concentrations. The performance of the improved model has been evaluated against surface PM10 observations as well as MODIS aerosol optical depth (AOD) values, showing that the spatial and temporal variation of mineral dust are better captured by the revised scheme. Due to the inclusion of the improvement, average PM10 concentrations at observational sites are more comparable to the observations, and the average mean bias (MB) and normalized mean bias (NMB) values are reduced from −196.29 µg m−3 and −52.79 % to −47.72 µg m−3 and −22.46 % respectively. Our study suggests that the erodibility factor, sandblasting efficiency and soil-related properties which are simply assumed in the empirical scheme may lack a physical mechanism and spatial–temporal representativeness. Further study and measurements should be conducted to obtain a more realistic and detailed map of these parameters in order to improve dust representation in the model.


2021 ◽  
Author(s):  
Rong Tian ◽  
Xiaoyan Ma ◽  
Jianqi Zhao

<p>Mineral dust plays a significant role in climate change and air quality, but large uncertainties remain in terms of dust emission prediction. In this study, we improved the treatments of dust emission process in a Global 3-D Chemical Transport model (GEOS-Chem) v12.6.0, by incorporating the geographical variation of aerodynamic roughness length (Z<sub>0</sub>), smooth roughness length (Z<sub>0s</sub>), soil texture, introducing Owen effect and Lu and Shao (1999) formulation of sandblasting efficiency α. To investigate the impact of the modifications incorporated in the model, several sensitivity simulations were performed for a severe dust storm during March 27, 2015 to April 2, 2015 over northern China. Results show that simulated threshold friction velocity is very sensitive to the updated Z<sub>0</sub> and Z<sub>0s</sub> field, with the relative difference ranging from 10% to 60% compared to the original model with uniform value. An inclusion of Owen effect leads to an increase in surface friction velocity, which mainly occurs in the arid and semi-arid regions of northwest China. The substitution of fixed value of α assumed in original scheme with one varying with friction velocity and soil texture based on observations reduces α by 50% on average, especially over regions with sand texture. Comparisons of sensitivity simulations and measurements show that the revised scheme with the implement of updates provides more realistic threshold friction velocities and PM<sub>10</sub> mass concentrations. The performance of the improved model has been evaluated against surface PM<sub>10</sub> observations as well as MODIS aerosol optical depth (AOD) values, showing that the spatial and temporal variation of mineral dust are better captured by the revised scheme. Due to the inclusion of the improvement, average PM<sub>10 </sub>concentrations at observational sites are more comparable to the observations, and the average mean bias (MB) and normalized mean bias (NMB) values are reduced from -196.29μg m<sup>-3 </sup>and -52.79% to -47.72μg m<sup>-3</sup> and -22.46% respectively. Our study suggests that the erodibility factor, sandblasting efficiency and soil-related properties which are simply assumed in the empirical scheme may lack physical mechanism and spatial-temporal representative. Further study and measurements should be conducted to obtain more realistic and detailed map of these parameters in order to improve dust representation in the model. </p>


2019 ◽  
Author(s):  
Laurent Menut ◽  
Paolo Tuccella ◽  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Marco Gaetani

Abstract. The aerosol direct and indirect effects are studied over West Africa in the summer of 2016 using the coupled WRF-CHIMERE regional model including aerosol-cloud interaction parametrization. First, a reference simulation is performed and compared with observations acquired during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaign which took place in June and July 2016. Sensitivity experiments are also designed to gain insights into the impact of the aerosols dominating the atmospheric composition in southern West Africa (one simulation with halved anthropogenic emissions and one with halved mineral dust emissions). The most important effect of aerosol-cloud interactions is found for the mineral dust scenario and it is shown that halving the emissions of mineral dust decreases the 2-m temperature by 0.5 K and the boundary layer height by 25 m in monthly average and over the Saharan region. The presence of dust aerosols also increases (resp. decreases) the shortwave (resp. longwave) radiation at the surface by 25 W/m2. It is also shown that the decrease of anthropogenic emissions along the coast has an impact on the mineral dust load over West Africa by increasing their emissions in Saharan region. It is due to a mechanism where particulate matter concentrations are decreased along the coast, imposing a latitudinal shift of the monsoonal precipitation, and, in turn, an increase of the surface wind speed over arid areas, inducing more mineral dust emissions.


2015 ◽  
Vol 15 (14) ◽  
pp. 7897-7911 ◽  
Author(s):  
L. Menut ◽  
G. Rea ◽  
S. Mailler ◽  
D. Khvorostyanov ◽  
S. Turquety

Abstract. The ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project was dedicated to study the atmospheric composition during the summer 2013 in the European Mediterranean region. During its campaign experiment part, the WRF (Weather Research and Forecast Model) and CHIMERE models were used in the forecast mode in order to decide whether intensive observation periods should be triggered. Each day, a simulation of 4 days was performed, corresponding to (D-1) to (D+2) forecast leads. The goal of this study was to determine whether the model forecast spread is lower or greater than the model biases compared to observations. It is shown that the differences between observations and the model are always higher than those between the forecasts. Among all forcing types used in the chemistry-transport model, it is shown that the strong bias and other related low forecast scores are mainly due to the forecast accuracy of the wind speed, which is used both for the mineral dust emissions (a threshold process) and for the long-range transport of aerosol: the surface wind speed forecast spread can reach 50%, leading to mineral dust emission forecast spread of up to 30%. These variations are responsible for a moderate forecast spread of the surface PM10 (a few percentage points) and for a large spread (more than 50%) in the mineral dust concentration at higher altitudes, leading to a mean AOD (aerosol optical depth) forecast spread of ±10%.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yang ◽  
Maigeng Zhou ◽  
Zhoupeng Ren ◽  
Mengmeng Li ◽  
Boguang Wang ◽  
...  

AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.


Sign in / Sign up

Export Citation Format

Share Document