Towards a dynamic soil survey: Identifying and delineating soil horizons in-situ using deep learning

Geoderma ◽  
2021 ◽  
Vol 401 ◽  
pp. 115341
Author(s):  
Zhuo-Dong Jiang ◽  
Phillip R. Owens ◽  
Chun-Liang Zhang ◽  
Kristofor R. Brye ◽  
David C. Weindorf ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


2021 ◽  
Author(s):  
Franck Albinet ◽  
Gerd Dercon ◽  
Tetsuya Eguchi

<p>The Joint IAEA/FAO Division of Nuclear Techniques in Food and Agriculture, through its Soil and Water Management & Crop Nutrition Laboratory (SWMCNL), launched in October 2019, a new Coordinated Research Project (D15019) called “Monitoring and Predicting Radionuclide Uptake and Dynamics for Optimizing Remediation of Radioactive Contamination in Agriculture''. Within this context, the high-throughput characterization of soil properties in general and the estimation of soil-to-plant transfer factors of radionuclides are of critical importance.</p><p>For several decades, soil researchers have been successfully using near and mid-infrared spectroscopy (MIRS) techniques to estimate a wide range of soil physical, chemical and biological properties such as carbon (C), Cation Exchange Capacities (CEC), among others. However, models developed were often limited in scope as only small and region-specific MIR spectra libraries of soils were accessible.</p><p>This situation of data scarcity is changing radically today with the availability of large and growing library of MIR-scanned soil samples maintained by the National Soil Survey Center (NSSC) Kellogg Soil Survey Laboratory (KSSL) from the United States Department of Agriculture (USDA-NRCS) and the Global Soil Laboratory Network (GLOSOLAN) initiative of the Food Agency Organization (FAO). As a result, the unprecedented volume of data now available allows soil science researchers to increasingly shift their focus from traditional modeling techniques such as PLSR (Partial Least Squares Regression) to classes of modeling approaches, such as Ensemble Learning or Deep Learning, that have proven to outperform PLSR on most soil properties prediction in a large data regime.</p><p>As part of our research, the opportunity to train higher capacity models on the KSSL large dataset (all soil taxonomic orders included ~ 50K samples) makes it possible to reach a quality of prediction for exchangeable potassium so far unsurpassed with a Residual Prediction Deviation (RPD) around 3. Potassium is known for its difficulty of being predicted but remains extremely important in the context of remediation of radioactive contamination after a nuclear accident. Potassium can help reduce the uptake of radiocaesium by crops, as it competes with radiocaesium in soil-to-plant transfer.</p><p>To ensure informed decision making, we also guarantee that (i) individual predictions uncertainty is estimated (using Monte Carlo Dropout) and (ii) individual predictions can be interpreted (i.e. how much specific MIRS wavenumber regions contribute to the prediction) using methods such as Shapley Additive exPlanations (SHAP) values.</p><p>SWMCNL is now a member of the GLOSOLAN network, which helps enhance the usability of MIRS for soil monitoring worldwide. SWMCNL is further developing training packages on the use of traditional and advanced mathematical techniques to process MIRS data for predicting soil properties. This training package has been tested in October 2020 with thirteen staff members of the FAO/IAEA Laboratories in Seibersdorf, Austria.</p>


2021 ◽  
Author(s):  
Patrick Aravena Pelizari ◽  
Christian Geiß ◽  
Elisabeth Schoepfer ◽  
Torsten Riedlinger ◽  
Paula Aguirre ◽  
...  

<p>Knowledge on the key structural characteristics of exposed buildings is crucial for accurate risk modeling with regard to natural hazards. In risk assessment this information is used to interlink exposed buildings with specific representative vulnerability models and is thus a prerequisite to implement sound risk models. The acquisition of such data by conventional building surveys is usually highly expensive in terms of labor, time, and money. Institutional data bases such as census or tax assessor data provide alternative sources of information. Such data, however, are often inappropriate, out-of-date, or not available. Today, the large-area availability of systematically collected street-level data due to global initiatives such as Google Street View, among others, offers new possibilities for the collection of <em>in-situ</em> data. At the same time, developments in machine learning and computer vision – in deep learning in particular – show high accuracy in solving perceptual tasks in the image domain. Thereon, we explore the potential of an automatized and thus efficient collection of vulnerability related building characteristics. To this end, we elaborated a workflow where the inference of building characteristics (e.g., the seismic building structural type, the material of the lateral load resisting system or the building height) from geotagged street-level imagery is tasked to a custom-trained Deep Convolutional Neural Network. The approach is applied and evaluated for the earthquake-prone Chilean capital Santiago de Chile. Experimental results are presented and show high accuracy in the derivation of addressed target variables. This emphasizes the potential of the proposed methodology to contribute to large-area collection of <em>in-situ</em> information on exposed buildings.</p>


2014 ◽  
Vol 48 ◽  
pp. 168-175 ◽  
Author(s):  
Vladislav Chrastný ◽  
Aleš Vaněk ◽  
Eva Čadková ◽  
Alice Růžičková ◽  
Ivana Galušková ◽  
...  

2019 ◽  
Vol 875 ◽  
Author(s):  
Jianqing Huang ◽  
Hecong Liu ◽  
Weiwei Cai

Online in situ prediction of 3-D flame evolution has been long desired and is considered to be the Holy Grail for the combustion community. Recent advances in computational power have facilitated the development of computational fluid dynamics (CFD), which can be used to predict flame behaviours. However, the most advanced CFD techniques are still incapable of realizing online in situ prediction of practical flames due to the enormous computational costs involved. In this work, we aim to combine the state-of-the-art experimental technique (that is, time-resolved volumetric tomography) with deep learning algorithms for rapid prediction of 3-D flame evolution. Proof-of-concept experiments conducted suggest that the evolution of both a laminar diffusion flame and a typical non-premixed turbulent swirl-stabilized flame can be predicted faithfully in a time scale on the order of milliseconds, which can be further reduced by simply using a few more GPUs. We believe this is the first time that online in situ prediction of 3-D flame evolution has become feasible, and we expect this method to be extremely useful, as for most application scenarios the online in situ prediction of even the large-scale flame features are already useful for an effective flame control.


2020 ◽  
Vol 252 ◽  
pp. 107793 ◽  
Author(s):  
Kaaviya Velumani ◽  
Simon Madec ◽  
Benoit de Solan ◽  
Raul Lopez-Lozano ◽  
Jocelyn Gillet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document