Effects of different tree species on infiltration and preferential flow in soils developing at a clayey spoil heap

Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115372
Author(s):  
Lukáš Jačka ◽  
Alena Walmsley ◽  
Martin Kovář ◽  
Jan Frouz
Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 353 ◽  
Author(s):  
Horodecki ◽  
Jagodziński

Research Highlights: Direct comparison of leaf litter decomposition rates between harsh soil conditions of degraded lands and adjacent “closer to natural” forest areas has not been done before. Background and Objectives: We aimed to fill this knowledge gap by determining the differences in amounts of carbon and nitrogen released by species-specific litter depending on decomposition rates in various stand and habitat conditions, which enables selection of the most ecologically and economically appropriate (for fast soil organic layer development) tree species for afforestation of reclaimed lands. Materials and Methods: The study was conducted on the external spoil heap of the “Bełchatów” lignite mine (Central Poland) and adjacent forests. In December 2013, we established a litterbag experiment beneath the canopies of birch and pine stands. We used litter of Alnus glutinosa (Gaertn.), Betula pendula (Roth), Pinus sylvestris (L.), and Quercus robur (L.) collected ex situ, which we installed (after oven-drying) beneath the canopies of eight stands. The experiment lasted for three years (with sampling of three-month intervals). Results: Harsh soil conditions of degraded lands are unfavorable for litter mineralization. It was found that 23%–74% of decomposed materials were mineralized in spoil heap stands, whereas in forest stands these amounts ranged from 35%–83%. Litter of Q. robur in birch stands on the spoil heap is predicted to take 12 years longer for total decomposition than in forest stands of the same species. This hinders organic carbon turnover and could result in elongation of the time for full biological and economic reclamation of degraded lands. On the other hand, decomposition of relatively fast decomposable litter (A. glutinosa and B. pendula) in pine stands on the spoil heap was faster than in pine stands in forest sites (17% and 13% faster, respectively). We did not observe this trend for decomposition of more recalcitrant litter types of P. sylvestris and Q. robur. Conclusions: The results show the value of selective choice of tree species for afforestation of post-mining areas to accelerate the development of technogenic soil substrates. We recommend introducing all tree species studied in the cluster form of admixtures as all of them could bring some profits in ecological and economical reclamation.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 718 ◽  
Author(s):  
Cezary Urbanowski ◽  
Paweł Horodecki ◽  
Jacek Kamczyc ◽  
Maciej Skorupski ◽  
Andrzej Jagodziński

Mites significantly contribute, prevalently by vertical movement, to mixing of the organic layer with the mineral soil, thus they may be important in renewing soils. Our aim was to analyze the changes in abundance and species richness of mesostigmatid assemblages on decomposing leaves of Alnus glutinosa (L.) Gaertn., Betula pendula Roth, Pinus sylvestris L. and Quercus robur L. in pine and birch stands growing on a reclaimed spoil heap and adjacent forests. In December 2013, 1024 litterbags (mesh size = 1 mm) containing leaf litter of broadleaved and coniferous trees (mean initial dry weight per sample = 5.789 g) were laid out in the same number and kind in each of the two sites. Mites were extracted from litterbags which were collected every 3–6 months for 3 years. In total, 6466 mites were identified in 59 taxa. Total abundance was higher on forest habitats (5174 specimens) compared to the spoil (1292), and in birch compared to pine stands, both in forest (3345, 1829, respectively) and spoil habitats (981, 311). Throughout the experiment, mites were most abundant on oak litter samples (2063 specimens), while the remaining litter types had similar abundances (1455–1482). At the beginning of the experiment (3–6 months) mite abundance was very low, but was higher on forest habitats. The highest abundance was found after 9 months—144 specimens in pine stands on the spoil heap and 685 in birch stands on forest habitats. During the study, 49 taxa were found on forest and 29 on heap habitats. In birch stands, 37 and 22 taxa were found, whereas in pine 30 and 21, on forest and heap, respectively. The most frequent species on the heap were Amblyseius tubae Karg, Asca bicornis Canestrini et Fanzago, and Asca aphidioides Linneaeus, whereas in forest habitat—Zercon peltatus C.L. Koch, Veigaia nemorensis C.L. Koch, and Trachytes aegrota C.L. Koch. Habitat conditions, tree species and litter type significantly determined the mesostigmatid species composition, richness and abundance. By selection of dominant tree species during afforestation, it is possible to significantly affect the soil fauna composition, and thus indirectly the rate of decomposition.


2018 ◽  
Vol 635 ◽  
pp. 1205-1214 ◽  
Author(s):  
Mateusz Rawlik ◽  
Marek Kasprowicz ◽  
Andrzej M. Jagodziński ◽  
Cezary Kaźmierowski ◽  
Remigiusz Łukowiak ◽  
...  

1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


2019 ◽  
Vol 48 (3) ◽  
pp. 417-425
Author(s):  
Md Khayrul Alam Bhuiyan ◽  
Md Akhter Hossain ◽  
Abdul Kadir Ibne Kamal ◽  
Mohammed Kamal Hossain ◽  
Mohammed Jashimuddin ◽  
...  

A study was conducted by using 5m × 5m sized 179 quadrates following multistage random sampling method for comparative regenerating tree species, quantitative structure, diversity, similarity and climate resilience in the degraded natural forests and plantations of Cox's Bazar North and South Forest Divisions. A total of 70 regenerating tree species were recorded representing maximum (47 species) from degraded natural forests followed by 43 species from 0.5 year 39 species from 1.5 year and 29 species from 2.5 year old plantations. Quantitative structure relating to ecological dominance indicated dominance of Acacia auriculiformis, Grewia nervosa and Lithocarpus elegans seedlings in the plantations whereas seedlings of Aporosa wallichii, Suregada multiflora and Grewia nervosa in degraded natural forests. The degraded natural forests possess higher natural regeneration potential as showed by different diversity indices. The dominance-based cluster analysis showed 2 major cluster of species under one of which multiple sub-clusters of species exists. Poor plant diversity and presence of regenerating exotic species in the plantations indicated poor climate resilience of forest ecosystem in terms of natural regeneration.


Sign in / Sign up

Export Citation Format

Share Document