Influence of structural framework on mountain slope deformation in the Maiella anticline (Central Apennines, Italy)

Geomorphology ◽  
2004 ◽  
Vol 60 (3-4) ◽  
pp. 417-432 ◽  
Author(s):  
E Di Luzio ◽  
M Saroli ◽  
C Esposito ◽  
G Bianchi-Fasani ◽  
G.P Cavinato ◽  
...  
2021 ◽  
Author(s):  
Emiliano Di Luzio ◽  
Marco Emanuele Discenza ◽  
Maria Luisa Putignano ◽  
Mariacarmela Minnillo ◽  
Diego Di Martire ◽  
...  

<p>The nature of the boundary between deforming rock masses and stable bedrock is a significant issue in the scientific debate on Deep-Seated Gravitational Slope Deformations (DSGSDs). In many DSGSDs the deforming masses move on a continuous sliding surface or thick basal shear zone (BSZ) [1-3]. This last feature is due to viscous and plastic deformations and was observed (or inferred) in many worldwide sites [4]. However, no clear evidence has been documented in the geological context of the Apennine belt, despite the several cases of DSGSDs documented in this region [5-6].</p><p>This work describes a peculiar case of a BSZ found in the central part of the Apennine belt and observed at the bottom of a DSGSD which affects the Meso-Cenozoic carbonate ridge overhanging the Luco dei Marsi village (Abruzzi region). The NNW-SSE oriented mountain range is a thrust-related Miocene anticline, edged on the east by an intramountain tectonic depression originated by Plio-Quaternary normal faulting. The BSZ appears on the field as a several meters-thick cataclastic breccia with fine matrix developed into Upper Cretaceous, biodetritic limestone and featuring diffuse rock damage.</p><p>The gravity-driven process was investigated through field survey, aerial photo interpretation and remote sensing (SAR interferometry) and framed into a geological model which was reconstructed also basing on geophysical evidence from the CROP 11 deep seismic profile. The effects on slope deformation determined by progressive displacements along normal faults and consequent unconfinement at the toe of the slope was analysed by a multiple-step numerical modelling constrained to physical and mechanical properties of rock mass.</p><p>The model results outline the tectonic control on DSGSD development at the anticline axial zone and confirm the gravitational origin of the rock mass damage within the BSZ. Gravity-driven deformations were coexistent with Quaternary tectonic processes and the westward (backward) migration of normal faulting from the basin margin to the inner zone of the deforming slope.</p><p><strong>References</strong></p><p>[1] Agliardi F., Crosta G.B., Zanchi A., (2001). Structural constraints on deep-seated slope deformation kinematics. Engineering Geology 59(1-2), 83-102. https://doi.org/10.1016/S0013-7952(00)00066-1.</p><p>[2] Madritsch H., Millen B.M.J., (2007). Hydrogeologic evidence for a continuous basal shear zone within a deep-seated gravitational slope deformation (Eastern Alps, Tyrol, Austria). Landslides 4(2), 149-162. https://doi.org/10.1007/s10346-006-0072-x.</p><p>[3] Zangerl C., Eberhardt E., Perzlmaier S., (2010). Kinematic behavior and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Engineering Geology 112(1-4), 53-67. https://doi.org/10.1016/j.enggeo.2010.01.001.</p><p>[4] Crosta G.B., Frattini P., Agliardi F., (2013). Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605, 13-33. https://doi.org/10.1016/j.tecto.2013.04.028.</p><p>[5] Discenza M.E., Esposito C., Martino S., Petitta M., Prestininzi A., Scarascia-Mugnozza G., (2011). The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): Geological-evolutionary model and numerical analysis. Bulletin of Engineering Geology and the Environment,70(4), 559-575. https://doi.org/10.1007/s10064-010-0342-7.</p><p>[6] Esposito C., Di Luzio E., Scarascia-Mugnozza G., Bianchi Fasani G., (2014). Mutual interactions between slope-scale gravitational processes and morpho-structural evolution of central Apennines (Italy): review of some selected case histories. Rendiconti Lincei. Scienze Fisiche e Naturali 25, 161-155. https://doi.org/10.1007/s12210-014-0348-3.</p>


2020 ◽  
Vol 13 (1) ◽  
pp. 88-102 ◽  
Author(s):  
Anne Hormes ◽  
Marc Adams ◽  
Anna Sara Amabile ◽  
Franz Blauensteiner ◽  
Christian Demmler ◽  
...  

2021 ◽  
Author(s):  
Thorsteinn Saemundsson ◽  
Pall Einarsson ◽  
Halldor Geirsson ◽  
Joaquin Belart ◽  
Asta Rut Hjartardottir ◽  
...  

<p>A large deep seated gravitational slope deformation has been detected in a mountain slope north of the Tungnakvíslarjökull outlet glacier, in the western part of the Mýrdalsjökull ice cap in South Iceland. Mýrdalsjökull also hosts the Katla central volcano, which erupted spectacularly last in 1918. Based on comparison of Digital Elevation Models (DEMs) obtained from aerial photographs, lidar and Pléiades stereoimages, the slope has been showing slow gravitational slope deformation since 1945 to present. The total vertical displacement in 1945-2020 is around 200 m. The deformation rate has not been constant over this time period and the maximum deformation occurred between 1999 and 2004 of total of 94 m or about 19 m/year.</p><p>The mountain slope north of the Tungnakvíslarjökull outlet glacier reaches up to around 1100 m height. The head scarp of the slide, which is almost vertical, is around 2 km wide rising from about 400-500 m in the western part up to the Mýrdalsjökull glacier at 1100 m in the east. The area of deformation, from the head scarp down to the present-day ice margin is around 1 km<sup>2</sup>. The total volume of the moving mass is not known as the depth of the sliding plane is not known, but the minimum mobile rock volume is between 100 to 200 million m<sup>3</sup>. The entire slope shows signs of displacement and is heavily fractured. Continuous GNSS stations which were installed in the uppermost part of the slope in August 2019 and in the lower part of the slope in 2020 provide real-time displacements. The GNSS time series show evidence of seasonal motion of the landslide, with highest deformation rates occurring in late summer or fall. Historically, seismicity in the area has been at maximum in the fall, although little seismicity has been observed since the GNSS stations were installed.</p><p>There are two main ideas of the causes for this deformation. One is the consequences of slope steepening by glacial erosion, followed by unloading and de-buttressing due to glacial retreat. Another proposed cause for the deformation is related to its location on the western flank of the Katla volcano. Persistent seismic activity in this area for decades may be explained by a slowly rising cryptodome into the base of the slope, which may also explain the slope failure.</p>


Tectonics ◽  
2021 ◽  
Vol 40 (10) ◽  
Author(s):  
Luca Del Rio ◽  
Marco Moro ◽  
Michele Fondriest ◽  
Michele Saroli ◽  
Stefano Gori ◽  
...  

2021 ◽  
Author(s):  
Luca Del Rio ◽  
Marco Moro ◽  
Michele Fondriest ◽  
Michele Saroli ◽  
Stefano Gori ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
F. Faccini ◽  
L. Federico ◽  
S. Torchio ◽  
A. Roccati ◽  
G. Capponi ◽  
...  

2021 ◽  
Author(s):  
Luca Del Rio ◽  
Marco Moro ◽  
Michele Fondriest ◽  
Stefano Gori ◽  
Emanuela Falcucci ◽  
...  

<p>Abstract</p><p>Active faulting and Deep-seated Gravitational Slope Deformation (DGSD) constitute common geological hazards in mountain belts worldwide. In the Italian central Apennines, km-thick carbonate sedimentary sequences are cut by major active normal faults which shape the landscape generating intermontane basins. Geomorphological observations suggest that the DGSDs are commonly located in the fault footwalls.</p><p>          We selected five mountain slopes affected by DGSD and exposing the footwall of active seismic normal faults exhumed from 2 to 0.5 km depth. We combined field structural analysis of the slopes with microstructural investigation of the slipping zones from the slip surfaces of both DGSDs and major faults. The collected data show that DGSDs exploit pre-existing surfaces formed both at depth and near the ground surface by tectonic faulting and, locally, by gravitational collapse. At the microscale, the widespread compaction of micro-grains (e.g., clasts indentation) forming the cataclastic matrix of both normal faults and DGSDs is consistent with clast fragmentation, fluid-infiltration and congruent pressure-solution mechanisms active at low ambient temperatures and lithostatic pressures. These processes are more developed in the slipping zones of normal faults because of the larger displacement accommodated.</p><p>          We conclude that in carbonate rocks of the central Apennines, DGSDs commonly exploit pre-existing tectonic faults/fractures and, in addition, localize slip along newly formed fractures that accommodate deformation mechanisms similar to those associated to tectonic faulting. Furthermore, the exposure of sharp slip surfaces along mountain slopes in the central Apennines can result from both surface seismic rupturing and DGSD or by a combination of them.</p>


Sign in / Sign up

Export Citation Format

Share Document