Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area

Geomorphology ◽  
2017 ◽  
Vol 276 ◽  
pp. 86-103 ◽  
Author(s):  
S. Zhang ◽  
L.M. Zhang
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qiguo Lian ◽  
Jiaying Ni ◽  
Jun Zhang ◽  
Julian Little ◽  
Shan Luo ◽  
...  

Abstract Background The prolonged effects of disasters on reproductive outcomes among the survivors are less studied, and the findings are inconsistent. We examined the associations of maternal exposure to the 2008 Wenchuan earthquake years before conception with adverse birth outcomes. Methods We included 73,493 women who delivered in 96 hospitals in 24 provinces and autonomous regions from the 2015/16 China Labor and Delivery Survey. We weighted the multivariable logistic models based on the combination of coarsened exact matching (CEM) weight and survey weight, and performed sex-stratified analysis to test whether associations of maternal earthquake exposure with adverse birth outcomes (Stillbirth, preterm birth [PTB], low birthweight [LBW], and small for gestational age [SGA]) varied by sex. Results The bivariate models showed that the weighted incidence of each adverse birth outcome was higher in exposed group than unexposed group: stillbirth (2.00% vs. 1.33%), PTB (14.14% vs. 7.32%), LBW (10.82% vs. 5.76%), and SGA (11.32% vs. 9.52%). The multivariable models showed maternal earthquake exposure was only associated significantly with a higher risk of PTB in offspring among all births (adjusted risk ratio [aRR](95%CI):1.25(1.06–1.48), P = 0.010). The sex-stratified analysis showed the association was significant among male births (aRR (95%CI): 1.40(1.12–1.75),P = 0.002),but unsignificant among female births. The sensitivity analysis reported similar findings. Conclusions The 2008 Wenchuan earthquake exposure has a long-term effect on PTB. Maternal acute exposure to disasters could be a major monitor for long-term reproductive outcomes. More attention should be paid to the underlining reasons for disaster-related adverse birth outcomes.


2012 ◽  
Vol 12 (1) ◽  
pp. 201-216 ◽  
Author(s):  
Q. Xu ◽  
S. Zhang ◽  
W. L. Li ◽  
Th. W. J. van Asch

Abstract. From 12 to 14 August 2010, heavy rainstorms occurred in the Sichuan province in SW China in areas which were affected by the 2008 Wenchuan Earthquake, inducing catastrophic debris flows. This disaster is named as "the 8.13 debris flows". The results of the research presented in this paper show that the 8.13 debris flows are characterized by a simultaneous occurrence, rapid-onsets, destructive impacts, and disaster chain effects. They are located along the seismic fault, because the source materials mainly originate from loose deposits of landslides which were triggered by the Wenchuan Earthquake. The presence of large amounts of these loose materials on the slopes and the development of high intensity rainfall events are the main causes for the formation of these debris flows. The study of the 8.13 debris flows can provide a benchmark for the analysis of the long-term evolution of these debris flows in order to make proper engineering decisions. A flexible drainage system is proposed in this paper as a preventive measure to mitigate the increasing activity of these debris flows in the earthquake-affected area.


2019 ◽  
Vol 250 ◽  
pp. 34-44 ◽  
Author(s):  
Guillem Domènech ◽  
Xuanmei Fan ◽  
Gianvito Scaringi ◽  
Theo W.J. van Asch ◽  
Qiang Xu ◽  
...  

2020 ◽  
Author(s):  
Erin Harvey ◽  
Xuanmei Fan ◽  
Tristram Hales ◽  
Daniel Hobley ◽  
Jie Liu ◽  
...  

<p>Co-seismic landslides can mobilise up to 3 km<sup>3</sup> of loose sediment within minutes. However, the export rate of this sediment is largely unconstrained. For example, it is estimated that a decade after the 2008 Wenchuan earthquake at least 90% of the co-seismic sediment remains stored on the hillslope. Post-earthquake debris flows are the main conduit by which such hillslope debris reaches the fluvial network but the mechanics that govern the triggering and runout of such flows remain unclear and as such they appear to behave largely unpredictably.  Material grain size is a key control on both triggering and runout, since it affects both hydrological (e.g. water loss during flow; saturation state before triggering) and frictional properties of the system. However, our understanding of the role of grain size in the genesis and evolution of debris flows remains poorly explored, largely due to limitations in real field data. Existing estimates for landslide and debris flow deposit grain size distributions (GSDs) are currently limited by 1. inconsistency of applied methods; 2. the very poor sorting of these sediments; 3. inaccessibility, and 4. inherent intra-deposit variability in GSD. </p><p>Our research aims to better understand the role of grain size using an unprecedentedly detailed set of field-constrained GSDs across the post-seismic landslides and debris flows of the 2008 Wenchuan earthquake. Here we present data quantifying the grain size distribution across two debris flows using two different techniques. The two debris flows occurred in response to prolonged rainfall in August 2019 and mobilised co-seismic debris from the 2008 earthquake. In the field, we selected four to eight 1 m x 1 m x 0.5 m pits along the centre line of each debris flow at regular intervals and sieved the pit material into 8 cm, 4 cm, 2 cm and 1 cm fractions at 10 cm depth increments. Boulders >8 cm were measured and weighed individually. Smaller samples were then collected from the finer fraction (<1 cm) and sieved further in the laboratory. The coarse fraction was independently constrained from calibrated photogrammetry, and this was coupled to drone surveying to ensure the coarsest fraction (≥1 m) was correctly represented. This study presents a detailed estimate of post-earthquake debris flow GSDs with the overarching aim to better understand sediment transport and deposition from debris flows in the years following an earthquake.</p>


2012 ◽  
Vol 12 (5) ◽  
pp. 1381-1392 ◽  
Author(s):  
S. Zhang ◽  
L. M. Zhang ◽  
M. Peng ◽  
L. L. Zhang ◽  
H. F. Zhao ◽  
...  

Abstract. A Geographic Information System (GIS)-based quantitative risk assessment methodology was adopted to evaluate the risks of loose deposits formed by the 2008 Wenchuan earthquake along a highway near the epicenter. A total of 305 loose deposits with a total volume of 4.0 × 107 m3 has been identified. A physical model was used to determine the failure probability of these loose deposits under six rainfall scenarios, assuming the loose deposits as infinite slopes. The calculated probability of rain-induced slope failures is verified by the recorded landslides at the same site during a storm in 2010. Seventy-nine out of the 112 rain-induced loose deposit failures are predicted by the reliability analysis, with an accuracy of 71%. The results of reliability analysis and information on the consequence of these rain-induced landslides enable the estimation of the annual societal and individual risks of the loose deposits. Under the rainfall scenarios of 30 mm/12 h and 70 mm/12 h, the estimated annual societal risks reach 8.8 and 7.5, respectively, and the individual risks reach 0.05 and 0.04, respectively, which are very high compared with present risk acceptance criteria. The preliminary assessment provides a benchmark for studying the long-term risks of these loose deposits and engineering decision.


2016 ◽  
Vol 16 (12) ◽  
pp. 2641-2655 ◽  
Author(s):  
Chenxiao Tang ◽  
Cees J. Van Westen ◽  
Hakan Tanyas ◽  
Victor G. Jetten

Abstract. Large earthquakes in mountainous regions may trigger thousands of landslides, some active for years. We analysed the changes in landslide activity near the epicentre of the 2008 Wenchuan earthquake by generating five landslide inventories for different years through stereoscopic digital visual image interpretation. From May 2008 to April 2015, 660 new landslides occurred outside the co-seismic landslide areas. In April 2015, the number of active landslides had gone down to 66, less than 1 % of the co-seismic landslides, but still much higher than the pre-earthquake levels. We expect that the landslide activity will continue to decay, but may be halted if extreme rainfall events occur.


Sign in / Sign up

Export Citation Format

Share Document