Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay

2012 ◽  
Vol 32 ◽  
pp. 111-116 ◽  
Author(s):  
O. Plé ◽  
T.N.H. Lê
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xiaohui Yang ◽  
Hongyuan Zhou ◽  
Shuo Zhang

In this study, the specimens of cemented sand were prepared by reinforcing it separately with different contents (0.5%, 1.0%, 1.5%, and 2.0%) of three different polymer fibers (polyamide, polyester, and polypropylene) prepared as filaments of different lengths (6, 9, and 12 mm). Then, these specimens were tested, and the improvement effects of the three fibers on the engineering-mechanical behavior of the cemented sand were analyzed and compared. The different microstructures and chemical compositions of the fiber-reinforced cemented sand specimens were investigated using electron microscopy and X-ray diffraction. Compression tests were performed to obtain the stress-strain curves of the specimens. Comparative analysis was performed on the variation patterns of the mechanical parameters (such as unconfined compressive strength and peak strain) of the specimens. Quantitative analysis was performed on the effect of fiber content and fiber filament length on the failure mode of the specimens. It was shown that the inclusion of fibers led to a change from brittle failure to ductile failure. The macro- and microexperimental results revealed that polypropylene fiber had the best improvement effect on the mechanical behavior of the cemented sand, followed by polyester fiber and polyamide fiber. In particular, the cemented sand specimen reinforced with 1.5% polypropylene fiber prepared as 9 mm length filaments had a brittleness index of 0.0578, exhibited ductile failure (in contrast to the brittle failure of the nonreinforced cemented sand), and yielded the highest unconfined compressive strength and shear strength among the specimens.


1992 ◽  
Vol 19 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Nemkumar Banthia

The improvements in the performance characteristics of cements due to carbon fiber reinforcement are described. In particular, the structure, the physical properties, the mechanical behavior, and the durability aspects of carbon–cement composites using pitch-based fibers are discussed. The various possible applications of these composites in structural and nonstructural applications are enumerated. The future research needs are identified. Key words: cements, carbon fibers, microstructure, strength, toughness, durability, applications.


2019 ◽  
Vol 9 (19) ◽  
pp. 4078 ◽  
Author(s):  
Yuxia Bai ◽  
Jin Liu ◽  
Zezhuo Song ◽  
Fan Bu ◽  
Changqing Qi ◽  
...  

This study focused on investigating the effects of polypropylene fiber on the liquefaction resistance of saturated sand. We performed a battery of tests with a state-of-the-art ring shear apparatus on fiber-reinforced saturated sand, considering the influences of fiber content and sand density. Two different shearing methods named shear-torque-controlled (STC) and cyclic-torque-controlled (CTC) were considered for carrying out the tests. An energy approach was chosen to evaluate the results, and the fiber reinforcement mechanisms were analyzed. Our test results showed that in STC tests, the shear strength and shearing time of saturated sand increased proportionally to an increase of fiber content and sand density. The cycles required for liquefaction in CTC tests also increase with an increase in sand density and fiber content. The presence of fibers clearly increases the shear energy required for liquefaction. The shear energy increases with an increase in sand density and fiber content. Greater total shear energy is required in specimens with a higher density or larger fiber content. Fiber reinforcement in sand has acted as a spatial network in interlocking soil grains, thereby resulting in the necessity of more energy for overcoming the resistance during the shearing process. After performing the shearing test, the unreinforced specimen with loose structure collapsed totally, and the one with a dense structure collapsed partially, while fiber reinforcement specimens still maintained structural stability.


Sign in / Sign up

Export Citation Format

Share Document