scholarly journals Mechanical Behavior of Cemented Sand Reinforced with Different Polymer Fibers

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xiaohui Yang ◽  
Hongyuan Zhou ◽  
Shuo Zhang

In this study, the specimens of cemented sand were prepared by reinforcing it separately with different contents (0.5%, 1.0%, 1.5%, and 2.0%) of three different polymer fibers (polyamide, polyester, and polypropylene) prepared as filaments of different lengths (6, 9, and 12 mm). Then, these specimens were tested, and the improvement effects of the three fibers on the engineering-mechanical behavior of the cemented sand were analyzed and compared. The different microstructures and chemical compositions of the fiber-reinforced cemented sand specimens were investigated using electron microscopy and X-ray diffraction. Compression tests were performed to obtain the stress-strain curves of the specimens. Comparative analysis was performed on the variation patterns of the mechanical parameters (such as unconfined compressive strength and peak strain) of the specimens. Quantitative analysis was performed on the effect of fiber content and fiber filament length on the failure mode of the specimens. It was shown that the inclusion of fibers led to a change from brittle failure to ductile failure. The macro- and microexperimental results revealed that polypropylene fiber had the best improvement effect on the mechanical behavior of the cemented sand, followed by polyester fiber and polyamide fiber. In particular, the cemented sand specimen reinforced with 1.5% polypropylene fiber prepared as 9 mm length filaments had a brittleness index of 0.0578, exhibited ductile failure (in contrast to the brittle failure of the nonreinforced cemented sand), and yielded the highest unconfined compressive strength and shear strength among the specimens.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3177
Author(s):  
Evelio Teijón-López-Zuazo ◽  
Jorge López-Rebollo ◽  
Luis Javier Sánchez-Aparicio ◽  
Roberto Garcia-Martín ◽  
Diego Gonzalez-Aguilera

This work aims to investigate different predictive models for estimating the unconfined compressive strength and the maximum peak strain of non-structural recycled concretes made up by ceramic and concrete wastes. The extensive experimental campaign carried out during this research includes granulometric analysis, physical and chemical analysis, and compression tests along with the use of the 3D digital image correlation as a method to estimate the maximum peak strain. The results obtained show that it is possible to accurately estimate the unconfined compressive strength for both types of concretes, as well as the maximum peak strain of concretes made up by ceramic waste. The peak strain for mixtures with concrete waste shows lower correlation values.


2011 ◽  
Vol 250-253 ◽  
pp. 788-794
Author(s):  
Shu Lin Zhan ◽  
Shu Sen Gao ◽  
Jun Ying Lai

In order to study the influence of modified polypropylene (PP) fiber on the physical and mechanical properties of curing sludge, the same amount of cement and different content of polypropylene fiber were mixed into the sludge. Unconfined compressive strength tests, water content tests and shear strength tests were carried out on different specimens with different curing time. The results show that the sludge curing effect is markedly improved by the addition of the polypropylene fiber. As to the curing sludge with the same curing time, when the content of the polypropylene fiber increases, the unconfined compressive strength and the cohesive strength greatly increase, and the internal frictional angle decreases.


2006 ◽  
Vol 43 (3) ◽  
pp. 294-309 ◽  
Author(s):  
Zahid Khan ◽  
Anwar Majid ◽  
Giovanni Cascante ◽  
D Jean Hutchinson ◽  
Parsa Pezeshkpour

The effect of variation in cement content, initial water content, void ratio, and curing time on wave velocity (low-strain property) and unconfined compressive strength (large-strain property) of a cemented sand is examined in this paper. The measured pulse velocity is compared with predictions made using empirical and analytical models, which are mostly based on the published results of resonant column tests. All specimens are made by mixing silica sand and gypsum cement (2.5–20% by weight) and tested under atmospheric pressure. The wave velocity reaches a maximum at optimum water content, and it is mostly affected by the number of cemented contacts; whereas compressive strength is governed not only by the number of contacts but also by the strength of contacts. Experimental relationships are developed for wave velocity and unconfined compressive strength as functions of cement content and void ratio. Available empirical models underpredict the wave velocity (60% on average), likely because of the effect of microfractures induced by confinement during the testing. Wave velocity is found to be a good indicator of cement content and unconfined compressive strength for the conditions of this study.Key words: wave velocity, low-strain stiffness, cemented sands, elastic moduli, unconfined compressive strength.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xue-lei Duan ◽  
Jing-shuang Zhang

In order to investigate the effects of fly ash and polypropylene fiber on mechanical properties, failure mode, and microstructure of soil-cement, the unconfined compression test, splitting tension test, and scanning electron microscopy (SEM) test of soil-cement with different polypropylene fiber contents (0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% by weight of dry soil) and fly ash contents (0%, 4%, 8%, and 12% by weight of dry soil) were carried out. The compressive and tensile strengths, deformation characteristics, failure mode, and microstructure of soil-cement modified with fly ash and polypropylene fiber were analyzed. The results show that the unconfined compressive strength and splitting tensile strength of soil-cement show a trend of increasing first and then decreasing with the increase of polypropylene fiber and fly ash content. Under the condition of 0.4% polypropylene fiber and 8% fly ash, the unconfined compressive strength and the splitting tensile strength are 4.90 MPa and 0.91 MPa, respectively, which increased by 32.79% and 51.67% as compared with the plain soil-cement, respectively. When 8% fly ash was used in the experiment, the unconfined compressive peak strain and the splitting tensile peak strain of the inclusion of 0.4% polypropylene fiber were 0.0410 and 0.0196, respectively. The corresponding peak strains were increased by 20.94% and 68.97% as compared with non-fiber-stabilized soil-cement, respectively. The stress-strain curve of fly ash soil-cement modified with polypropylene fiber can be divided into compaction phase, linear rise phase, nonlinear rise phase, and failure phase. Polypropylene fiber constrains the lateral deformation of fly ash soil-cement, which improves the peak strain and the failure mode of soil-cement.


Sign in / Sign up

Export Citation Format

Share Document