Long-term internal shear strength of a reinforced GCL based on shear creep rupture tests

2012 ◽  
Vol 33 ◽  
pp. 43-50 ◽  
Author(s):  
Helmut Zanzinger ◽  
Fokke Saathoff
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hang Lin ◽  
Xing Zhang ◽  
Yixian Wang ◽  
Rui Yong ◽  
Xiang Fan ◽  
...  

Creep property is an important mechanical property of rocks. Given the complexity of rock masses, mechanical parameters change with time in the creep process. In this work, a nonlinear function for describing the time-dependent change of parameters was introduced and an improved variable-parameter nonlinear Nishihara shear creep model of rocks was established. By creating rock-like materials, the mechanical properties of rocks under the shear creep test condition were studied, and the deformation characteristics and long-term shear strength of rocks during creep were analyzed. The material parameters of the model were identified using the creep test results. Comparison of the model’s calculated values and experimental data indicated that the model can describe the creep characteristics of rocks well, thus proving the correctness and rationality of the improved model. During shear creep, the mechanical properties of rocks have an aging effect and show hardening characteristics under low shear stress. Furthermore, according to the fact that Gk of the nonlinear model can characterize the creep deformation resistance, a method to determine the long-term shear strength is proposed.


2020 ◽  
pp. 105678952097442
Author(s):  
Xing Zhang ◽  
Hang Lin ◽  
Yixian Wang ◽  
Rui Yong ◽  
Yanlin Zhao ◽  
...  

The creep characteristics of joint have an important influence on the long-term stability of rock mass engineering such as tunnels and slopes. In this paper, the sawtooth angle α is taken as the variable, five different numerical models of regular sawtooth joints are established using the discrete element numerical method, to study the shear mechanical characteristics of joints under creep condition. In addition, the shear mechanical properties of joints under transient condition are compared to analysis the influence of creep on the mechanical characteristics of joint. The results show that under shear creep condition: (1) Shear displacement of joint increases stepwise with time. At low sawtooth angles, the difference of joint shear displacement with different normal stresses is large. The long-term shear strength of joint is proportional to normal stress and sawtooth angle. (2) The total absorbed energy U and elastic energy Ue of the joint both increase as the sawtooth angle α increases. Dissipated energy Ud tends to increase first and then decrease with increasing sawtooth angle. Compared with the energy characteristics under transient condition, it is found that the joint under creep condition not only has a lower shear strength, but also requires less total absorbed energy and dissipative energy, and fewer cracks at critical failure. (3) Before the peak strength, the damage variable D increases nonlinearly with the shear displacement. Compared with the transient condition, the damage amount corresponding to the peak strength under the creep condition is smaller, and the evolution rate of the damage variable D with shear displacement at the critical failure is higher.


2008 ◽  
Vol 26 (2) ◽  
pp. 130-144 ◽  
Author(s):  
Werner Müller ◽  
Ines Jakob ◽  
Stefan Seeger ◽  
Renate Tatzky-Gerth

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
K. Maruyama ◽  
N. Sekido ◽  
K. Yoshimi

Predictions as to 105 h creep rupture strength of grade 91 steel have been made recently. The predicted values are examined with long-term creep rupture data of the steel. Three creep rupture databases were used in the predictions: data of tube products of grade 91 steel reported in National Institute for Materials Science (NIMS) Creep Data Sheet (NIMS T91 database), data of T91 steel collected in Japan, and data of grade 91 steel collected by an American Society of Mechanical Engineers (ASME) code committee. Short-term creep rupture data points were discarded by the following criteria for minimizing overestimation of the strength: selecting long-term data points with low activation energy (multiregion analysis), selecting data points crept at stresses lower than a half of proof stress (σ0.2/2 criterion), and selecting data points longer than 1000 h (cutoff time of 1000 h). In the case of NIMS T91 database, a time–temperature parameter (TTP) analysis of a dataset selected by multiregion analysis can properly describe the long-term data points and gives the creep rupture strength of 68 MPa at 600 °C. However, TTP analyses of datasets selected by σ0.2/2 criterion and cutoff time of 1000 h from the same database overestimate the data points and predict the strength over 80 MPa. Datasets selected by the same criterion from the three databases provide similar values of the strength. The different criteria for data selection have more substantial effects on predicted values of the strength of the steel than difference of the databases.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Ryuya Takanashi ◽  
Yoshinori Ohashi ◽  
Wataru Ishihara ◽  
Kazushige Matsumoto

AbstractCross-laminated timber (CLT) has been used extensively in timber construction. CLT panels are typically used in roofs and floors that carry a continuous load, and it is important to examine the long-term loading capacity of CLT. However, studies that focus on the long-term loading capacity of CLT are limited. To this end, we conducted long-term out-of-plane bending tests on seven-layer CLT made from Japanese larch (Larix kaempferi) under constant environmental conditions, investigated creep performance and duration of load, and experimentally analyzed creep rupture behavior. The mean estimated relative creep after 50 years was 1.49. The sample showed a satisfactory resistance to creep as a building material. The duration of load of most of the specimens in this study was shorter than the conventional value of small clear wood specimens. Specimens had a lower duration of load capacity than solid lumber. According to the results of survival analysis, a loading level of 70% or more caused the initial failure of specimens. Creep rupture of most of the specimens occurred at less deflection than displacement at failure in the short-term loading test. Additional studies focusing on the effects of finger joints, transverse layers, and width of a specimen on creep rupture behavior are suggested.


1980 ◽  
Vol 17 (2) ◽  
pp. 203-224 ◽  
Author(s):  
R. Blanchet ◽  
F. Tavenas ◽  
R. Garneau

During the construction of heavy structures, such as bridges and overpasses, on soft clays on the north shore of the St. Lawrence Valley, a detailed load test program on friction piles was performed to establish the characteristics of the most suitable type of pile and to study its long-term behaviour. Three types of piles, timber, steel pipe with closed end, and precast concrete Herkules H-420 piles, were tested. Four timber piles driven in a group and submitted to a 712 kN load served to study the long-term settlement of a small group of piles. Three deep settlement gauges were installed in the centre of this group for measuring settlements in clay at various depths.This test program was completed by the instrumentation of two bridge piers in order to verify the behaviour of larger groups of piles.The paper presents the results of the test piles, the long-term behaviour (4 years) of the bridge pier foundations resting on friction piles in soft clay, and the interpretation of the results.This study shows that the pore pressures induced by pile driving are related to the pre-consolidation of the clay and that they are much larger for tapered piles. It is demonstrated that the effective stress analysis method proposed in 1976 by Meyerhof determines adequately the ultimate pile bearing capacity, but that the effect of the timber pile taper doubles the skin friction.The settlement analysis of pile groups shows that settlements are due to the reconsolidation of the clay and shear creep deformations in the clay close to the pile wall.


2010 ◽  
Vol 96 (10) ◽  
pp. 620-628 ◽  
Author(s):  
Masahiko Arai ◽  
Kentaro Asakura ◽  
Hiroyuki Doi ◽  
Hirotsugu Kawanaka ◽  
Toshihiko Koseki ◽  
...  

2007 ◽  
Vol 345-346 ◽  
pp. 553-556 ◽  
Author(s):  
Hassan Ghassemi Armaki ◽  
Kouichi Maruyama ◽  
Mitsuru Yoshizawa ◽  
Masaaki Igarashi

Recent researches have shown the premature breakdown of creep rupture strength in long term creep region of advanced high Cr ferritic steels. As safe operation of power plants becomes a serious problem we should be able to detect and predict the breakdown transition of creep rupture strength. Some methods for detecting the breakdown transition have been presented till now like the measurement of reduction of area after creep rupture and particle size of laves phase. However it will be more economic if we make use of non-destructive tests, for example, hardness testing. In this paper 3 types of ferritic steels with different Cr concentration have been studied. The results suggest that the hardness of aged structures is constant independently of exposure time in short term region, whereas the hardness breaks down in long term region. The boundary of breakdown in hardness coincides with that of breakdown in creep rupture strength.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Imanuel Tarigan ◽  
Keiichi Kurata ◽  
Naoki Takata ◽  
Takashi Matsuo ◽  
Masao Takeyama

ABSTRACTThe creep behavior of a new type of austenitic heat-resistant steel Fe-20Cr-30Ni-2Nb (at.%), strengthened by intermetallic Fe2Nb Laves phase, has been examined. Particular attention has been given to the role of grain boundary Laves phase in the strengthening mechanism during long-term creep. The creep resistance increases with increasing area fraction (ρ) of grain boundary Laves phase according to equation ε/ε = (1−ρ), where ε0 is the creep rate at ρ = 0. In addition, the creep rupture life is also extended with increasing ρ without ductility loss, which can yield up to 77% of elongation even at ρ = 89%. Microstructure analysis revealed local deformation and well-developed subgrains formation near the grain boundary free from precipitates, while dislocation pile-ups were observed near the grain boundary Laves phase. Thus, the grain boundary Laves phase is effective in suppressing the local deformation by preventing dislocation motion, and thereby increases the long-term creep rupture strength. This novel creep strengthening mechanism was proposed as “grain boundary precipitation strengthening mechanism” (GBPS).


Sign in / Sign up

Export Citation Format

Share Document