Use of brown coal as a detoxifier of soils contaminated with heavy metals

2018 ◽  
Vol 184 ◽  
pp. 232-238 ◽  
Author(s):  
Olga S. Bezuglova ◽  
Sergey N. Gorbov ◽  
Svetlana A. Tischenko ◽  
Anastasia E. Shimko
Keyword(s):  
1992 ◽  
Vol 27 (4) ◽  
pp. 693-700 ◽  
Author(s):  
J. Horáćek ◽  
M. Punćochář ◽  
J. Drahoš

Abstract Calcium-loaded low-rank brown coal was used to extract various heavy metals (Cu, Hg, Pb, Zn) from aqueous solutions. The results showed a high efficiency of extraction — almost 99.9% of metals in the concentration range of 3,000–10,000 mg/1 were removed from the solutions. Both the batch and continuous modes of contacting were tested and for the latter, the process of penetration was also studied.


2021 ◽  
pp. 175-186
Author(s):  
Natalia S. Pershay ◽  
Yuriy G. Yanuta

The problem of environmental pollution with heavy metals is relevant for the Republic of Belarus. One of the ways to remove heavy metals from industrial wastewater is to treat them with sorbents. Sorbents based on peat and brown coal are effective and inexpensive, but their use leads to secondary contamination of the treated environment with water-soluble organic compounds. It is shown that the developed sorption materials based on peat and brown coal residues sorb heavy metal ions (copper, nickel, zinc) and do not pollute the treated medium with water-soluble organic compounds (the COС value of sorption materials does not exceed 5 mg O2/dm3). It was found that the exchange capacity of sorption materials in an acidic medium (pH 2.0) is higher than that of humic acids and is in the range of 0.17–1.38 mmol/g. The use of ultrasonic treatment to increase the exchange capacity of sorption materials makes it possible to increase it by 2.3–3.0 times for copper ions and 2.2 times for zinc ions, which is due to the destruction of large aggregates. The obtained results formed the basis for the development of a technology for obtaining sorption materials for wastewater treatment from heavy metal ions.


1996 ◽  
Vol 11 (1-2) ◽  
pp. 343-346 ◽  
Author(s):  
Anna Karczewska ◽  
Tadeusz Chodak ◽  
Jarosław Kaszubkiewicz

Author(s):  
Alina Maciejewska ◽  
Jolanta Kwiatkowska-Malina

AbstractPlants are a key link in the trophic chain and therefore may determine the global circulation of pollutants, including heavy metals (HMs). In the context of sustaining soil functions associated with food safety, the bioavailability of HMs should be reduced to a minimum needed for adequate plant nutrition. The objective of the study was to analyse the bioavailability of zinc, lead and cadmium in phacelia (Phacelia tanacetifolia Benth.) under conditions of varied soil pH and doses of brown coal-based organo-mineral amendment so-called the Rekulter. The experiment was carried out on Haplic Luvisols in field stone pots that sank into the ground, with the following HM content (in mg kg−1 of soil): 90.0 (Zn), 60.4 (Pb) and 0.80 (Cd). The Rekulter was applied to the soil in the amounts of 180, 360 and 720 g per pot. The bio-accumulation index (BI) was calculated as a ratio of a HM content in a plant to its total content in a soil sample, and it was used to evaluate bioavailability. The application of the Rekulter reduced the bioavailability of the studied heavy metals: the lowest BI values were found in the case of Pb. The uptake of HMs by phacelia was the smallest for the highest applied Rekulter dose at a soil pH of approximately 6.0. The bioavailability of Zn, Pb and Cd was influenced by soil pH and organic matter content, reducing their mobility and possible environmental risks. The Rekulter reduced HM bioavailability: the lowest bio-accumulation index (BI) values were found in the case of Pb. The application of the Rekulter into soil improved the physical, chemical and biological properties of soil, including the reduction of contaminant bioavailability.


2013 ◽  
Vol 20 (4) ◽  
pp. 701-708
Author(s):  
Danuta Leszczyńska ◽  
Jolanta Kwiatkowska-Malina

Abstract The aim of this study was to determine the influence of organic matter from different sources on the yield of winter wheat and macroelements content in it. The experiment was carried out in stoneware pots sank into the ground filled up with 56.4 kg of soil: Haplic Luvisols formed from loamy sand. The soil was slightly acidic. The soil was mixed up with liquid form of salts: Cd(NO3)2, Pb(CH3COO)2 and ZnSO4. To the soil a brown coal preparation, so called “Rekulter”, brown coal, peat and farmyard manure were applied in the amount of 180, 140, 390 and 630 g per pot, which is equivalent to 5 Mg of organic carbon per ha. Winter wheat Triticum aestivum ssp. vulgare (L.) for grain was cultivated. The manurial value of organic substance originated from different sources expressed as the plants' crop was the highest for Rekulter and the lowest for peat. The addition of organic substance to soil contaminated with heavy metals causes the higher content of potassium, magnesium and nitrogen in winter wheat's grain. The content of calcium and sodium in winter wheat grain's did not depend from addition of organic matter to soil. Organic matter added into contaminated soil increased the uptake of main macroelements by winter wheat straw. Organic matter fertilization broadened the K: (Ca + Mg) ratio in grain and straw.


Sign in / Sign up

Export Citation Format

Share Document