scholarly journals Transfer learning and siamese neural network based identification of geochemical anomalies for mineral exploration: A case study from the Cu Au deposit in the NW Junggar area of northern Xinjiang Province, China

Author(s):  
Bangcai Wu ◽  
Xiaohui Li ◽  
Feng Yuan ◽  
He Li ◽  
Mingming Zhang
2020 ◽  
Author(s):  
Soundarya Krishnan ◽  
Rishab Khincha ◽  
Lovekesh Vig ◽  
Tirtharaj Dash ◽  
Ashwin Srinivasan

All organs in the human body are susceptible to cancer, and we now have a growing store of images of lesions in different parts of the body. This, along with the acknowledged ability of neural-network methods to analyse image data, would suggest that accurate models for lesions can now be constructed by a deep neural network. However an important difficulty arises from the lack of annotated images from various parts of the body. Our proposed approach to address the issue of scarce training data for a target organ is to apply a form of transfer learning: that is, to adapt a model constructed for one organ to another for which there are minimal or no annotations. After consultation with medical specialists, we note that there are several discriminating visual features between malignant and benign lesions that occur consistently across organs. Therefore, in principle, these features boost the case for transfer learning on lesion images across organs. However, this has never been previously investigated. In this paper, we investigate whether lesion knowledge can be transferred across organs. Specifically, as a case study,we examine the transfer of a lesion model from the brain to lungs and lungs to the brain. We evaluate the efficacy of transfer of a brain-lesion model to the lung, and the transfer of a lung-lesion model to the brain by comparing against a model constructed: (a) without model-transfer(i.e.random weights); and (b) using model-transfer from a lesion-agnostic dataset (ImageNet). In all cases, our lesion models perform substantially better. These results point to the potential utility of transferring lesion-knowledge across organs other than those considered here.


2018 ◽  
Vol 8 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Aref Shirazi ◽  
Adel Shirazy ◽  
Shahab Saki ◽  
Ardeshir Hezarkhani

An innovative neural-fuzzy clustering method is for predicting cluster (anomaly / background) of each new sample with the probability of its presence. This method which is a combination of the Fuzzy C-Means clustering method (FCM) and the General Regression Neural Network (GRNN), is an attempt to first divide the samples in the region by fuzzy method with the probability of being in each cluster and then with the results of this Practice, the artificial neural network is trained, and can analyze the new data entered in the region with the probable percentage of the clusters. More clearly, after a full mineral exploration, the sample can be attributed to a certain probable percentage of anomalies. To test the accuracy of this clustering in the form of the theory alone, a case study was conducted on the results of the analysis of regional alluvial sediments data in Birjand, IRAN, which resulted in satisfactory results. This software is written in MATLAB and its first application in mining engineering. This algorithm can be used in other similar applications in various sciences.


2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


Sign in / Sign up

Export Citation Format

Share Document