scholarly journals Local compliance with national transparency legislation

2021 ◽  
pp. 101659
Author(s):  
Gregory Michener ◽  
Simeon Nichter
Keyword(s):  
1978 ◽  
Vol 45 (4) ◽  
pp. 581-589 ◽  
Author(s):  
V. P. Vellody ◽  
M. Nassery ◽  
W. S. Druz ◽  
J. T. Sharp

With a linearized respiratory magnetometer, measurements of anteroposterior and lateral diameters of both the rib cage and the abdomen were made at functional residual capacity and continuously during tidal breathing. Twenty-five subjects with normal respiratory systems were studied in the sitting, supine, lateral decubitus, and prone body positions. When subjects changed from sitting to supine position anteroposterior diameters of both rib cage and abdomen decreased while their lateral diameters increased. Both anteroposterior and lateral tidal excursions of the rib cage decreased; those of the abdomen increased. When subjects turned from supine to lateral decubitus position both anteroposterior diameters increased and the lateral diameters decreased. This was associated with an increase in both lateral excursions and a decrease in the abdominal anteroposterior excursions. Diameters and tidal excursions in the prone position resembled those in the supine position. Diameter changes could be explained by gravitational effects. Differences in tidal excursions accompanying body position change were probably related to 1) differences in the distribution of respiratory muscle force, 2) differences in the activity or mechanical advantage of various inspiratory muscles, and 3) local compliance changes in parts of the rib cage and abdomen.


Author(s):  
Wojciech Bejgerowski ◽  
John W. Gerdes ◽  
Satyandra K. Gupta ◽  
Hugh A. Bruck ◽  
Stephen Wilkerson

Successful realization of a flapping wing micro air vehicle (MAV) requires development of a light weight drive mechanism converting the rotary motion of the motor into flapping motion of the wings. Low weight of the drive mechanism is required to maximize the payload and battery capacity. In order to make flapping wing MAVs attractive in search, rescue, and recovery missions, they should be disposable from the cost point of view. Injection molded compliant drive mechanisms are an attractive design option to satisfy the weight, efficiency and cost requirements. In the past, we have successfully used multi-piece molding to create mechanisms utilizing distributed compliance for smaller MAVs. However, as the size of the MAV increases, mechanisms with distributed compliance exhibit excessive deformation. Therefore localizing rather than distributing the compliance in the mechanism becomes a more attractive option. Local compliance can be realized through multimaterial designs. A multi-material injection molded mechanism additionally offers reduction in the number of parts. This paper describes an approach for determining the drive mechanism shape and size that meets both the functional design and multi-material molding requirements. The design generated by the approach described in this paper was utilized to realize a flapping wing MAV with significant enhancements in the payload capabilities.


2021 ◽  
Vol 873 ◽  
pp. 47-52
Author(s):  
Alessandra Pirinu ◽  
Francesco Panella

For structural health of mechanical structures, non-destructive detection and material defect characterization represent the main useful tools for mechanical decay prediction caused by local composite damage phenomena. In this work, internal delamination due to alternate bending were characterized in flat specimens, performing fatigue and static tests, coupled with thermographic, optical, and ultrasonic analysis for damage detection and evolution purposes. Damage to rupture behavior of CFRP material through mechanical tensile tests is performed on several samples and non-destructive inspection procedures are optimized during successive HCF tests to detect in real time local compliance variations and damage initiation. Thermographic continuous monitoring and occasional ultrasonic analysis are implemented to analyze composite anomalies during fatigue life and to elaborate a procedure for identification of delamination induced damage before failure. IRT and UT results are computed with MATLAB analysis for damage evaluation with strain and compliance data acquired during tests.


Author(s):  
Jovana Jovanova ◽  
Simona Domazetovska ◽  
Mary Frecker

Functionally graded compliant mechanisms can be fabricated with additive manufacturing technology by engineering the microstructural and compositional gradients at selected locations resulting in compositionally graded zones of higher and lower flexibility. The local compliance depends on the geometry of the structure as well as the material property in the selected region. As Nitinol (NiTi) is well suited for applications requiring compliance, the critical transformation stress and the superelastic modulus of elasticity are crucial parameters for defining the local compliance. To understand the behavior at the interface between two different material compositions, three models of gradient change between the alloys are analyzed: step change, linear and polynomial gradients. In addition to localize the deformation in the interface, three different flexure designs in the interface are analyzed. This paper will address a methodology for modeling and parametrization of material properties and transition at the interface, for different flexure designs. The combined effort in the interface of the functional grading and the geometry will be used for the design of monolithic self-deployable structures, initially folded in compact shape. The design motivation comes from the self-deploying mechanisms inspired by insects’ wings.


2019 ◽  
Vol 5 ◽  
Author(s):  
G. A. Pappas ◽  
J. Botsis

Lightweight design demands and complexity requirements of modern high-end structures in aerospace, automotive, sports and bioengineering can be successfully covered by a combination of fiber reinforced polymers (FRPs) with metallic components. Conventionally, mechanical locking is favored in integrating multi-material parts, avoiding bonded interfaces. The feasibility of a multi-material carbon FRP–aluminum structural component of a robotic exoskeleton, fabricated in a single step with the FRP directly cured on the aluminum domain, was investigated. To conduct the feasibility analysis, pertinent systematic FE modeling involving cohesive contact was employed to optimize the design, while strength and fracture testing were conducted to define the formed interfaces’ resistance. Sandblasting treatment was also investigated and compared with plain surfaces. The results show that the effect of residual stresses due to curing process governs the created joint’s durability. To reduce their effect, the local compliance of the multi-material components was altered by introducing a compliant layer along with modification of the aluminum domains’ local geometry in a manner that does not compromise the overall structural integrity. The interface stresses of the optimized geometry are a few times lower than the ones estimated for the initial design. The methodology adopted herein delivers some guidelines on treating such problems.


1987 ◽  
Vol 19 (10) ◽  
pp. 1399-1406 ◽  
Author(s):  
N K Blomley

Debates on the Shops Act (1950), which regulates the hours and conditions of retail employment and operation in England and Wales, have largely occurred in ignorance of the realities of enforcement at local level. This paper, drawing upon a postal survey and official prosecution statistics, is an attempt to examine spatial, temporal, and sectoral variations in proceedings and offenders. The findings seem to reflect the breakdown in local compliance with the Act. This can be related to the major restructuring of some sectors of retail capital. It also seems that enforcement is locally specific. The Act, in other words, is not applied, but interpreted at local level in the light of place-specific conditions.


Author(s):  
Stefano Zucca ◽  
Sergio Filippi ◽  
Fabio Droetti ◽  
Muzio M. Gola

Resonant vibrations affect fatigue life of vane segments. Friction damping is employed to reduce vibration amplitude. When vane segments are assembled, they are twisted so that lower platforms are in contact. The sum of displacements of the two ends of the lower platform after twisting is defined ‘interlocking’. Different ‘interlocking’ values correspond to different values of normal contact force. When interlocked vanes vibrate under external force excitation, energy is dissipated by friction forces at lower platform contacts providing damping to the system. The aim of this paper is the experimental validation of a numerical code for forced response calculation of interlocked vane segments. Since friction forces depend on relative displacements of bodies in contact, the system is nonlinear. System force response is computed by means of Harmonic Balance Method (HBM). Contact model implemented in the code is characterised by tangential and normal stiffness to take into account local compliance of the contact area. Gross slip occurs when the instantaneous ratio of tangential force to normal force is equal to the friction coefficient. Also effect of microslip is taken in account. The experimental set-up used to validate the code is made of a vane segment fixed at the outer radius to an aluminium frame and in contact with two supports at the inner radius. Comparison between the numerical predictions and experimental results is performed for different values of interlocking (i.e. force normal to the contact).


Sign in / Sign up

Export Citation Format

Share Document