scholarly journals History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives

2014 ◽  
Vol 121 ◽  
pp. 78-88 ◽  
Author(s):  
Hanqin Tian ◽  
Kamaljit Banger ◽  
Tao Bo ◽  
Vinay K. Dadhwal
Author(s):  
Sigrún Dögg Eddudóttir ◽  
Eva Svensson ◽  
Stefan Nilsson ◽  
Anneli Ekblom ◽  
Karl-Johan Lindholm ◽  
...  

AbstractShielings are the historically known form of transhumance in Scandinavia, where livestock were moved from the farmstead to sites in the outlands for summer grazing. Pollen analysis has provided a valuable insight into the history of shielings. This paper presents a vegetation reconstruction and archaeological survey from the shieling Kårebolssätern in northern Värmland, western Sweden, a renovated shieling that is still operating today. The first evidence of human activities in the area near Kårebolssätern are Hordeum- and Cannabis-type pollen grains occurring from ca. 100 bc. Further signs of human impact are charcoal and sporadic occurrences of apophyte pollen from ca. ad 250 and pollen indicating opening of the canopy ca. ad 570, probably a result of modification of the forest for grazing. A decrease in land use is seen between ad 1000 and 1250, possibly in response to a shift in emphasis towards large scale commodity production in the outlands. Emphasis on bloomery iron production and pitfall hunting may have caused a shift from agrarian shieling activity. The clearest changes in the pollen assemblage indicating grazing and cultivation occur from the mid-thirteenth century, coinciding with wetter climate at the beginning of the Little Ice Age. The earliest occurrences of anthropochores in the record predate those of other shieling sites in Sweden. The pollen analysis reveals evidence of land use that predates the results of the archaeological survey. The study highlights how pollen analysis can reveal vegetation changes where early archaeological remains are obscure.


2003 ◽  
Vol 6 (2) ◽  
pp. 141-173 ◽  
Author(s):  
Theo Spek ◽  
Willy Groenman-van Waateringe ◽  
Maja Kooistra ◽  
Lideweij Bakker

Celtic field research has so far been strongly focused on prospection and mapping. As a result of this there is a serious lack of knowledge of formation and land-use processes of these fields. This article describes a methodological case study in The Netherlands that may be applied to other European Celtic fields in the future. By interdisciplinary use of pedological, palynological and micromorphological research methods the authors were able to discern five development stages in the history of the field, dating from the late Bronze Age to the early Roman Period. There are strong indications that the earthen ridges, very typical for Celtic fields in the sandy landscapes of north-west Europe, were only formed in the later stages of Celtic field agriculture (late Iron Age and early Roman period). They were the result of a determined raising of the surface by large-scale transportation of soil material from the surroundings of the fields. Mainly the ridges were intensively cultivated and manured in the later stages of Celtic field cultivation. In the late Iron Age a remarkable shift in Celtic field agriculture took place from an extensive system with long fallow periods, a low level of manuring and extensive soil tillage to a more intensive system with shorter fallow periods, a more intensive soil tillage and a higher manuring intensity. There are also strong indications that rye (Secale cereale) was the main crop in the final stage of Celtic field agriculture.


2016 ◽  
Vol 371 (1703) ◽  
pp. 20150312 ◽  
Author(s):  
Casey M. Ryan ◽  
Rose Pritchard ◽  
Iain McNicol ◽  
Matthew Owen ◽  
Janet A. Fisher ◽  
...  

Miombo and mopane woodlands are the dominant land cover in southern Africa. Ecosystem services from these woodlands support the livelihoods of 100 M rural people and 50 M urban dwellers, and others beyond the region. Provisioning services contribute $9 ± 2 billion yr −1 to rural livelihoods; 76% of energy used in the region is derived from woodlands; and traded woodfuels have an annual value of $780 M. Woodlands support much of the region's agriculture through transfers of nutrients to fields and shifting cultivation. Woodlands store 18–24 PgC carbon, and harbour a unique and diverse flora and fauna that provides spiritual succour and attracts tourists. Longstanding processes that will impact service provision are the expansion of croplands (0.1 M km 2 ; 2000–2014), harvesting of woodfuels (93 M tonnes yr −1 ) and changing access arrangements. Novel, exogenous changes include large-scale land acquisitions (0.07 M km 2 ; 2000–2015), climate change and rising CO 2 . The net ecological response to these changes is poorly constrained, as they act in different directions, and differentially on trees and grasses, leading to uncertainty in future service provision. Land-use change and socio-political dynamics are likely to be dominant forces of change in the short term, but important land-use dynamics remain unquantified. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.


2020 ◽  
Author(s):  
Özlem Sert

<p>Humid weather conditions of the sixteenth century enabled the introduction of aqua crops to Southeastern European landscapes. The Ottoman government employed a group of experts for the cultivation of rice to implement and rehabilitate rice production. Rice plantations, as an anthropogenic intrusion in the region between Tigris to the Danube, had a fundamental social and environmental impact. Organization of human resources on a large scale; land reclamations, deforestation, and kilometres-long irrigation work changed the landscape, produced seasonal miasma and aquatic pests. Ottoman rice plantations transformed the Southeastern European socio-ecological landscapes in early modern times. Historical data about the Ottoman rice plantations open new insights for improving our knowledge about climate history, the history of riverbeds and the history of malaria in this landscape. The study presents a monography of the plantations with historical drawings and maps, showing the farms on river beds, delineates the responsiveness of the rice harvest to precipitation and temperature changes and maps the triggered aquatic pests due to climate change and deforestation. The presentation aims at opening a historical perspective to today's questions on climate change, hydrology and vector caused diseases.</p>


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 129 ◽  
Author(s):  
Erle C. Ellis ◽  
Arthur H.W. Beusen ◽  
Kees Klein Goldewijk

Human populations and their use of land have reshaped landscapes for thousands of years, creating the anthropogenic biomes (anthromes) that now cover most of the terrestrial biosphere. Here we introduce the first global reconstruction and mapping of anthromes and their changes across the 12,000-year interval from 10,000 BCE to 2015 CE; the Anthromes 12K dataset. Anthromes were mapped using gridded global estimates of human population density and land use from the History of the Global Environment database (HYDE version 3.2) by a classification procedure similar to that used for prior anthrome maps. Anthromes 12K maps generally agreed with prior anthrome maps for the same time periods, though significant differences were observed, including a substantial reduction in Rangelands anthromes in 2000 CE but with increases before that time. Differences between maps resulted largely from improvements in HYDE’s representation of land use, including pastures and rangelands, compared with the HYDE 3.1 input data used in prior anthromes maps. The larger extent of early land use in Anthromes 12K also agrees more closely with empirical assessments than prior anthrome maps; the result of an evidence-based paradigm shift in characterizing the history of Earth’s transformation through land use, from a mostly recent large-scale conversion of uninhabited wildlands, to a long-term trend of increasingly intensive transformation and use of already inhabited and used landscapes. The spatial history of anthropogenic changes depicted in Anthromes 12K remain to be validated, especially for earlier time periods. Nevertheless, Anthromes 12K is a major advance over all prior anthrome datasets and provides a new platform for assessing the long-term environmental consequences of human transformation of the terrestrial biosphere.


2020 ◽  
Vol 79 (11) ◽  
Author(s):  
Ahmet Ozgur Dogru ◽  
Cigdem Goksel ◽  
Ruusa Magano David ◽  
Doganay Tolunay ◽  
Seval Sözen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document