The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin

2017 ◽  
Vol 153 ◽  
pp. 51-65 ◽  
Author(s):  
Carina Hoorn ◽  
Giovanni R. Bogotá-A ◽  
Millerlandy Romero-Baez ◽  
Emmy I. Lammertsma ◽  
Suzette G.A. Flantua ◽  
...  
2021 ◽  
Author(s):  
Dominik Jaeger ◽  
Roland Stalder ◽  
Cristiano Chiessi ◽  
André Sawakuchi ◽  
Michael Strasser

<p>Trace metal concentrations and associated hydrous lattice point defects (OH defects) in quartz can help reveal its host rock’s crystallization history and are easily quantified using electron microprobe and infrared spectroscopy, respectively. These chemical impurities are preserved throughout the sedimentary cycle and thus lend themselves as tracers for sediment provenance analyses, particularly in settings where “traditional” provenance tools, e.g., thermochronology and heavy mineral analysis, are difficult due to factors like low mineral fertility and aggressive tropical weathering.</p><p>In this study, we apply this provenance analysis tool to detrital, sand-sized quartz grains from the Amazon River and its major tributaries, draining the Andean orogen as well as the Guiana- and Central Brazil Shields. Trace metal and OH defect concentrations from individual catchments are spread out over wide and mutually overlapping ranges of values. This means that each individual quartz grain cannot be unequivocally attributed to one catchment. However, evaluation of a statistically sound number of grains reveals that Andean quartz is, on average, richer in the trace metal aluminum (and Al-related OH defects) than quartz derived from one of the shield sources.</p><p>We evaluate our findings in the context of previous provenance studies on Amazon River sediments and discuss a potential future application of analyzing trace metals and OH defects in quartz in the offshore sediment record. Any past, major rearrangements in the Amazon watershed affecting the ratio of Andean vs. Shield-derived quartz grains should be detectable and our approach may therefore contribute to the reconstruction of Amazon drainage basin evolution.</p>


2018 ◽  
Vol 16 (3) ◽  
Author(s):  
James S. Albert ◽  
Pedro Val ◽  
Carina Hoorn

ABSTRACT We review geological evidence on the origin of the modern transcontinental Amazon River, and the paleogeographic history of riverine connections among the principal sedimentary basins of northern South America through the Neogene. Data are reviewed from new geochronological datasets using radiogenic and stable isotopes, and from traditional geochronological methods, including sedimentology, structural mapping, sonic and seismic logging, and biostratigraphy. The modern Amazon River and the continental-scale Amazon drainage basin were assembled during the late Miocene and Pliocene, via some of the largest purported river capture events in Earth history. Andean sediments are first recorded in the Amazon Fan at about 10.1-9.4 Ma, with a large increase in sedimentation at about 4.5 Ma. The transcontinental Amazon River therefore formed over a period of about 4.9-5.6 million years, by means of several river capture events. The origins of the modern Amazon River are hypothesized to be linked with that of mega-wetland landscapes of tropical South America (e.g. várzeas, pantanals, seasonally flooded savannahs). Mega-wetlands have persisted over about 10% northern South America under different configurations for >15 million years. Although the paleogeographic reconstructions presented are simplistic and coarse-grained, they are offered to inspire the collection and analysis of new sedimentological and geochronological datasets.


Author(s):  
Allan H. Devol ◽  
John I. Hedges

The Amazon, like smaller rivers, is the daughter of its drainage basin. Local climate and interactions over time with the template of topography, geology, and vegetation determine the size and flow of rivers. Likewise, the compositions of the particulate and dissolved materials carried by rivers result from initially similar rainwaters that have been uniquely imprinted by contact with almost every plant, animal, and mineral in the catchment. Rivers thus provide a continuously flowing signal, recorded by isotopes, ions and molecules, of the cumulative effects of drainage basin processes such as weathering, oxidation/reduction, gas exchange, photosynthesis, biodegradation, and partitioning. This recording is complementary to more classical methods of remote sensing based on electromagnetic radiation, but is composited over a wider range of time and space scales and includes effects of subcanopy and subsurface processes. The Amazon River is similar to other rivers in this regard, but is unusual in the size and extent of different environments its waters touch. The Amazon River is the world’s largest river and drains the world’s largest single catchment (∼6,000,000 km2). It discharges an average of about 200,000 m3 of water per second to the Atlantic Ocean. This volume is about 5 times more than the Congo, the second largest river. The Amazon has 1100 major tributaries, three of which are nearly as large as the Congo. From its origins at about 5200 m in the Andes about 200 km from the Pacific Ocean, the Amazon goes through at least 10 name changes as it snakes its way 6500 km eastward to the Atlantic Ocean (Schreider and Schreider 1970). The flooded areas along the lower mainstem are important sources of greenhouse gases such as methane (Bartlett and Harriss 1993, Devol et al. 1994) and the latent heat release from convective precipitation in the basin is sufficient to influence global climate. The Amazon drainage basin contains 40% of the world’s tropical rain forest (dos Santos, 1987) and is home to countless species of plants and animals. The river itself contains some 2000 described species of fish.


Author(s):  
O. Mudroch ◽  
J. R. Kramer

Approximately 60,000 tons per day of waste from taconite mining, tailing, are added to the west arm of Lake Superior at Silver Bay. Tailings contain nearly the same amount of quartz and amphibole asbestos, cummingtonite and actinolite in fibrous form. Cummingtonite fibres from 0.01μm in length have been found in the water supply for Minnesota municipalities.The purpose of the research work was to develop a method for asbestos fibre counts and identification in water and apply it for the enumeration of fibres in water samples collected(a) at various stations in Lake Superior at two depth: lm and at the bottom.(b) from various rivers in Lake Superior Drainage Basin.


Sign in / Sign up

Export Citation Format

Share Document