Mesozoic – Cenozoic tectonic evolution of southwestern Tian Shan: Evidence from detrital zircon U/Pb and apatite fission track ages of the Ulugqat area, Northwest China

2014 ◽  
Vol 26 (3-4) ◽  
pp. 986-1008 ◽  
Author(s):  
Wei Yang ◽  
Marc Jolivet ◽  
Guillaume Dupont-Nivet ◽  
Zhaojie Guo
2017 ◽  
Vol 43 (1) ◽  
pp. 299
Author(s):  
W. Kurz ◽  
A. Wölfler ◽  
R. Handler

The Cenozoic tectonic evolution of the Eastern Alps is defined by nappe assembly within the Penninic and Subpenninic units and their subsequent exhumation. The units above, however, are affected by extension and related faulting. By applying distinct thermochronological methods with closure temperatures ranging from ~450° to ~40°C we reveal the thermochronological evolution of the eastern part of the Eastern Alps. 40Ar/39Ar dating on white mica, zircon and apatite fission track, and apatite U/Th-He thermochronology were carried out within distinct tectonic units (Penninic vs. Austroalpine) and on host rocks and fault- related rocks (cataclasites and fault gouges) along major fault zones. We use particularly the ability of fission tracks to record the thermal history as a measure of heat transfer in fault zones, causing measurable changes of fission track ages and track lengths. Additionally, these studies will provide a general cooling and exhumation history of fault zones and adjacentcrustal blocks.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


1973 ◽  
Vol 10 (6) ◽  
pp. 846-851
Author(s):  
Peter A. Christopher

Apatite fission-track ages for weakly altered rocks from the Syenite Range and Burwash Landing area of the Yukon Territory, and Cassiar area of British Columbia are shown to be consistent and generally concordant with K–Ar ages obtained on biotite from the same samples. More intensely altered rocks from Granisle Mine and the Copper Mountain area of British Columbia have discordant ages, due in part to alteration of apatite grains and, for samples from the Copper Mountain intrusions, to a Cretaceous (?) thermal event.


Sign in / Sign up

Export Citation Format

Share Document