scholarly journals Radiological health risk assessment of drinking water and soil dust from Gauteng and North West Provinces, in South Africa

Heliyon ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e03392 ◽  
Author(s):  
D. Madzunya ◽  
V.P. Dudu ◽  
M. Mathuthu ◽  
M. Manjoro
Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 667
Author(s):  
Qingyuan Guo ◽  
Liming Li ◽  
Xueyan Zhao ◽  
Baohui Yin ◽  
Yingying Liu ◽  
...  

To better understand the source and health risk of metal elements in PM2.5, a field study was conducted from May to December 2018 in the central region of the Liaoning province, China, including the cities of Shenyang, Anshan, Fushun, Benxi, Yingkou, Liaoyang, and Tieling. 24 metal elements (Na, K, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Sb, Pb, Bi, Al, Sr, Mg, Ti, Ca, Fe, Ba, and Si) in PM2.5 were measured by ICP-MS and ICP-OES. They presented obvious seasonal variations, with the highest levels in winter and lowest in summer for all seven cities. The sum of 24 elements were ranged from to in these cities. The element mass concentration ratio was the highest in Yingkou in the spring (26.15%), and the lowest in Tieling in winter (3.63%). The highest values of elements in PM2.5 were mostly found in Anshan and Fushun among the studied cities. Positive matrix factorization (PMF) modelling revealed that coal combustion, industry, traffic emission, soil dust, biomass burning, and road dust were the main sources of measured elements in all cities except for Yingkou. In Yingkou, the primary sources were identified as coal combustion, metal smelting, traffic emission, soil dust, and sea salt. Health risk assessment suggested that Mn had non-carcinogenic risks for both adults and children. As for Cr, As, and Cd, there was carcinogenic risks for adults and children in most cities. This study provides a clearer understanding of the regional pollution status of industrial urban agglomeration.


Author(s):  
Reza Aghlmand ◽  
Saeed Rasi Nezami ◽  
Ali Abbasi

In recent years, in addition to water resources’ quantity, their quality has also received much attention. In this study, the quality of the urban water distribution network in northwestern Iran was evaluated using the water quality index (WQI) method. Then, some important trace elements were investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements (Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was calculated based on both World Health Organization (WHO) and Iranian drinking water standards. Comparing the results of these standards revealed that the WQI based on the Iranian standard was slightly higher. Regarding the calculated WQI for the study region, the status of water quality for drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index (HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for both children and adults. The results of this study can be applied for efficient water management and human health protection programs in the study area.


Sign in / Sign up

Export Citation Format

Share Document