scholarly journals Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger

Heliyon ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e03401 ◽  
Author(s):  
M.C. Ndukwu ◽  
M. Simo-Tagne ◽  
F.I. Abam ◽  
O.S. Onwuka ◽  
S. Prince ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 267 ◽  
Author(s):  
Guillermo Valencia Ochoa ◽  
Jhan Piero Rojas ◽  
Jorge Duarte Forero

This manuscript presents an advanced exergo-economic analysis of a waste heat recovery system based on the organic Rankine cycle from the exhaust gases of an internal combustion engine. Different operating conditions were established in order to find the exergy destroyed values in the components and the desegregation of them, as well as the rate of fuel exergy, product exergy, and loss exergy. The component with the highest exergy destroyed values was heat exchanger 1, which is a shell and tube equipment with the highest mean temperature difference in the thermal cycle. However, the values of the fuel cost rate (47.85 USD/GJ) and the product cost rate (197.65 USD/GJ) revealed the organic fluid pump (pump 2) as the device with the main thermo-economic opportunity of improvement, with an exergo-economic factor greater than 91%. In addition, the component with the highest investment costs was the heat exchanger 1 with a value of 2.769 USD/h, which means advanced exergo-economic analysis is a powerful method to identify the correct allocation of the irreversibility and highest cost, and the real potential for improvement is not linked to the interaction between components but to the same component being studied.


2020 ◽  
Vol 10 (21) ◽  
pp. 7873
Author(s):  
Johann Emhofer ◽  
Klemens Marx ◽  
Tilman Barz ◽  
Felix Hochwallner ◽  
Luisa F. Cabeza ◽  
...  

Integration of a three-media refrigerant/phase change material (PCM)/water heat exchanger (RPW-HEX) in the hot superheated section of a heat pump (HP) system is a promising approach to save energy for domestic hot water (DHW) generation in multi-family houses. The RPW-HEX works as a desuperheater and as a latent thermal energy storage in the system. The latent thermal energy storage is charged during heating and cooling operation and discharged for DHW production. For this purpose, the water side of the RPW-HEX is connected to decentralized DHW storage devices. DHW consumption, building standards and climate, energy prices, material costs, and production costs are the constraints for the selection of the optimal storage size and RPW-HEX design. This contribution presents the techno-economic analysis of the RPW-HEX integrated into an R32 air source HP. With the aid of experimentally validated dynamic computer models, the optimal sizing of the RPW-HEX storage is discussed to maximize energy savings and to minimize the investment costs. The results are discussed in the context of a return of investment analysis, practical implementation aspects and energetic potential of the novel technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ibrahim ◽  
Ebrahem A. Algehyne ◽  
Tareq Saeed ◽  
Abdallah S. Berrouk ◽  
Yu-Ming Chu ◽  
...  

AbstractImproved heat transfer efficiency with considering economic analysis in heating systems is an interesting topic for researchers and scientists in recent years. This research investigates the heat transfer rate (HTR) and flow of non-Newtonian water-Carboxyl methyl cellulose (CMC) based Al2O3 nanofluid in a helical heat exchanger equipped with common and novel turbulators using two-phase model. The requirements for dimensions and cost reduction and also energy saving in thermal systems are the main goal of this study. According to gained results usage of corrugated channel in helical heat exchanger has a considerable influence on thermal and hydraulic performance evaluation criteria (THPEC) index of helical heat exchanger and can improve the THPEC index. Thus, Re = 5000 is obtained as an optimum value, in which the maximum THPEC value is achieved. As it is found in this paper, in case of using novel heat exchanger instead of the basic smooth system, the thermal properties (by considering Nusselt number) increases about 210%, the hydraulic performance (friction factor) reduces about 28%, performance evaluation criteria index increases about 57% and the material consumption (in case of similar THPEC) decreases about 31%. In another word, with considering economic analysis for the basic and novel system which has same efficiencies, the novel one has lower length and consequently 31% lower material.


Sign in / Sign up

Export Citation Format

Share Document