scholarly journals Stomatal development and genetic expression in Arabidopsis thaliana L.

Heliyon ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. e07889
Author(s):  
Md. Rayhan Chowdhury ◽  
Md. Sabbir Ahamed ◽  
Md. Atik Mas-ud ◽  
Hiya Islam ◽  
Mst Fatamatuzzohora ◽  
...  
2021 ◽  
Author(s):  
Keiko U Torii

Abstract Background Stomata are adjustable pores on the surface of plant shoots for efficient gas exchange and water control. The presence of stomata is essential for plant growth and survival, and the evolution of stomata is considered as a key developmental innovation of the land plants, allowing colonization on land from aquatic environments some 450 million years ago. In the past two decades, molecular genetic studies using the model plant Arabidopsis thaliana identified key genes and signalling modules that regulate stomatal development: master-regulatory transcription factors that orchestrate cell-state transitions and peptide-receptor signal transduction pathways, which, together, enforce proper patterning of stomata within the epidermis. Studies in diverse plant species, ranging from bryophytes to angiosperm grasses, have begun to unravel the conservation and uniqueness of the core modules in stomatal development. Scope Here, I review the mechanisms of stomatal development in the context of epidermal tissue patterning. First, I introduce the core regulatory mechanisms of stomatal patterning and differentiation in the model species Arabidopsis thaliana. Subsequently, experimental evidence is presented supporting the idea that different cell types within the leaf epidermis, namely stomata, hydathodes pores, pavement cells, and trichomes, either share developmental origins or mutually influence each other’s gene regulatory circuits during development. Emphasis is taken on extrinsic and intrinsic signals regulating the balance between stomata and pavement cells, specifically by controlling the fate of Stomatal-Lineage Ground Cells (SLGCs) to remain within the stomatal-cell lineage or differentiate into pavement cells. Finally, I discuss the influence of inter-tissue-layer communication between the epidermis and underlying mesophyll/vascular tissues on stomatal differentiation. Understanding the dynamic behaviors of stomatal precursor cells and their differentiation in the broader context of tissue and organ development may help design plants tailored for optimal growth and productivity in specific agricultural applications and a changing environment.


Development ◽  
2009 ◽  
Vol 136 (13) ◽  
pp. 2265-2276 ◽  
Author(s):  
T. Liu ◽  
K. Ohashi-Ito ◽  
D. C. Bergmann

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1694
Author(s):  
Abigael López-Cordova ◽  
Humberto Ramírez-Medina ◽  
Guillermo-Antonio Silva-Martinez ◽  
Leopoldo González-Cruz ◽  
Aurea Bernardino-Nicanor ◽  
...  

Late embryogenesis abundant (LEA) proteins are a large protein family that mainly function in protecting cells from abiotic stress, but these proteins are also involved in regulating plant growth and development. In this study, we performed a functional analysis of LEA13 and LEA30 from Arabidopsis thaliana. The results showed that the expression of both genes increased when plants were subjected to drought-stressed conditions. The insertional lines lea13 and lea30 were identified for each gene, and both had a T-DNA element in the regulatory region, which caused the genes to be downregulated. Moreover, lea13 and lea30 were more sensitive to drought stress due to their higher transpiration and stomatal spacing. Microarray analysis of the lea13 background showed that genes involved in hormone signaling, stomatal development, and abiotic stress responses were misregulated. Our results showed that LEA proteins are involved in drought tolerance and participate in stomatal density.


2016 ◽  
Vol 28 (3) ◽  
pp. 646-660 ◽  
Author(s):  
Carina Klermund ◽  
Quirin L. Ranftl ◽  
Julia Diener ◽  
Emmanouil Bastakis ◽  
René Richter ◽  
...  

1994 ◽  
Vol 5 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Seok So Chang ◽  
Soon Ki Park ◽  
Byung Chul Kim ◽  
Bong Joong Kang ◽  
Dal Ung Kim ◽  
...  

1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty van Loenen-Martinet ◽  
Hetty Blankestijn de Vries

Sign in / Sign up

Export Citation Format

Share Document