RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana

2020 ◽  
Author(s):  
Liang Chen ◽  
Mingfeng Zhao ◽  
Zhongliang Wu ◽  
Sicheng Chen ◽  
Enrique Rojo ◽  
...  
PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009828
Author(s):  
Mohammad S. Baig ◽  
Yimo Dou ◽  
Benjamin G. Bergey ◽  
Russell Bahar ◽  
Justin M. Burgener ◽  
...  

Transcription-related proteins are frequently identified as targets of sumoylation, including multiple subunits of the RNA polymerase II (RNAPII) general transcription factors (GTFs). However, it is not known how sumoylation affects GTFs or whether they are sumoylated when they assemble at promoters to facilitate RNAPII recruitment and transcription initiation. To explore how sumoylation can regulate transcription genome-wide, we performed SUMO ChIP-seq in yeast and found, in agreement with others, that most chromatin-associated sumoylated proteins are detected at genes encoding tRNAs and ribosomal proteins (RPGs). However, we also detected 147 robust SUMO peaks at promoters of non-ribosomal protein-coding genes (non-RPGs), indicating that sumoylation also regulates this gene class. Importantly, SUMO peaks at non-RPGs align specifically with binding sites of GTFs, but not other promoter-associated proteins, indicating that it is GTFs specifically that are sumoylated there. Predominantly, non-RPGs with SUMO peaks are among the most highly transcribed, have high levels of TFIIF, and show reduced RNAPII levels when cellular sumoylation is impaired, linking sumoylation with elevated transcription. However, detection of promoter-associated SUMO by ChIP might be limited to sites with high levels of substrate GTFs, and promoter-associated sumoylation at non-RPGs may actually be far more widespread than we detected. Among GTFs, we found that TFIIF is a major target of sumoylation, specifically at lysines 60/61 of its Tfg1 subunit, and elevating Tfg1 sumoylation resulted in decreased interaction of TFIIF with RNAPII. Interestingly, both reducing promoter-associated sumoylation, in a sumoylation-deficient Tfg1-K60/61R mutant strain, and elevating promoter-associated SUMO levels, by constitutively tethering SUMO to Tfg1, resulted in reduced RNAPII occupancy at non-RPGs. This implies that dynamic GTF sumoylation at non-RPG promoters, not simply the presence or absence of SUMO, is important for maintaining elevated transcription. Together, our findings reveal a novel mechanism of regulating the basal transcription machinery through sumoylation of promoter-bound GTFs.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


1997 ◽  
Vol 110 (15) ◽  
pp. 1781-1791 ◽  
Author(s):  
M.A. Grande ◽  
I. van der Kraan ◽  
L. de Jong ◽  
R. van Driel

We have investigated the spatial relationship between sites containing newly synthesized RNA and domains containing proteins involved in transcription, such as RNA polymerase II and the transcription factors TFIIH, Oct1, BRG1, E2F-1 and glucocorticoid receptors, using dual immunofluorescence labelling followed by confocal microscopy on cultured cells. As expected, a high degree of colocalisation between the RNA polymerase II and sites containing newly synthesised RNA was observed. Like the newly synthesised RNA and the RNA polymerase II, we found that all the transcription factors that we studied are distributed more or less homogeneously throughout the nucleoplasm, occupying numerous small domains. In addition to these small domains, TFIIH was found concentrated in coiled bodies and Oct1 in a single large domain of about 1.5 microm in 30% of the cells in an asynchronous HeLa cell culture. Remarkably, we found little or no relationship between the spatial distribution of the glucocorticoid receptor, Oct1 and E2F-1 on the one hand and RNA polymerase II and transcription sites on the other hand. In contrast, a significant but incomplete overlap was observed between the spatial distributions of transcription sites and BRG1 and TFIIH. These results indicate that many of the transcription factor-rich nuclear domains are not actively involved in transcription. They may represent incomplete transcription initiation complexes, inhibitory complexes, or storage sites.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Sara Osman ◽  
Patrick Cramer

Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.


Sign in / Sign up

Export Citation Format

Share Document