Spontaneous formation and mechanism of anaerobic ammonium oxidation (anammox) bacteria in swine wastewater treatment system

2020 ◽  
Vol 154 ◽  
pp. 105058
Author(s):  
Zhenzhong Pan ◽  
Ruizhi Dai ◽  
Jingsong Liao ◽  
Jih-Gaw Lin ◽  
Yiguo Hong ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Ru Yang ◽  
Hu Li ◽  
Jian-Qiang Su ◽  
Guo-Wei Zhou

Anaerobic ammonium oxidation coupled to nitrite reduction (termed as Anammox) was demonstrated as an efficient pathway to remove nitrogen from a wastewater treatment system. Recently, anaerobic ammonium oxidation was also identified to be linked to iron(III) reduction (termed Feammox) with dinitrogen, nitrite, or nitrate as end-product, reporting to enhance nitrogen removal from the wastewater treatment system. However, little is known about the role of Anammox bacteria in the Feammox process. Here, slurry from wastewater reactor amended with ferrihydrite was employed to investigate activity of Anammox bacteria in the Feammox process using the 15N isotopic tracing technique combined with 16S rRNA gene amplicon sequencing. A significantly positive relationship between rates of 15N2 production and iron(III) reduction indicated the occurrence of Feammox during incubation. Relative abundances of Anammox bacteria including Brocadia, Kuenenia, Jettenia, and unclassified Brocadiaceae were detected with low relative abundances, whereas Geobacteraceae dominated in the treatment throughout the incubation. 15N2 production rates significantly positively correlated with relative abundances of Geobacter, unclassified Geobacteraceae, and Anammox bacteria, revealing their contribution to nitrogen generation via Feammox. Overall, these findings suggested Anammox bacteria or cooperation between Anammox bacteria and iron(III) reducers serves a potential role in Feammox process.


2010 ◽  
Vol 61 (3) ◽  
pp. 737-743 ◽  
Author(s):  
J. C. Araujo ◽  
M. M. S. Correa ◽  
E. C. Silva ◽  
A. P. Campos ◽  
V. M. Godinho ◽  
...  

This work applied PCR amplification method and Fluorescence in situ hybridisation (FISH) with primers and probes specific for the anammox organisms and aerobic ammonia-oxidising β-Proteobacteria in order to detect these groups in different samples from a wastewater treatment system comprised by UASB reactor and three polishing (maturation) ponds in series. Seven primer pairs were used in order to detect Anammox bacteria. Positive results were obtained with three of them, suggesting that Anammox could be present in polishing pond sediments. However, Anammox bacteria were not detected by FISH, indicating that they were not present in sediment samples, or they could be present but below FISH detection limit. Aerobic ammonia- and nitrite-oxidising bacteria were verified in water column samples through Most Probable Number (MPN) analysis, but they were not detected in sediment samples by FISH. Ammonia removal efficiencies occurred systematically along the ponds (24, 32, and 34% for polishing pond 1, 2, and 3, respectively) but the major reaction responsible for this removal is still unclear. Some nitrification might have occurred in water samples because some nitrifying bacteria were present. Also Anammox reaction might have occurred because Anammox genes were detected in the sediments, but probably this reaction was too low to be noticed. It is important also to consider that some of the ammonia removal observed might be related to NH3 stripping, associated with the pH increase resulting from the intensive photosynthetic activity in the ponds (mechanism under investigation). Therefore, it can be concluded that more than one mechanism (or reaction) might be involved in the ammonia removal in the polishing ponds investigated in this study.


2021 ◽  
pp. 117763
Author(s):  
Yuchun Yang ◽  
Mohammad Azari ◽  
Craig W. Herbold ◽  
Meng Li ◽  
Huaihai Chen ◽  
...  

2009 ◽  
Vol 59 (12) ◽  
pp. 2405-2410 ◽  
Author(s):  
Ping Li ◽  
Lei Tong ◽  
Kun Liu ◽  
Yanhong Wang ◽  
Yanxin Wang

Three new strains named LPA11, LPB11 and LPC24 were isolated to investigate the patterns of indole degradation and ammonia oxidation in swine wastewater from different parts of a swine wastewater treatment system by the direct spreading plate method. These three isolates were all identified as Pseudomonas putida based on 16S-rDNA gene sequences, main physiological and biochemical analysis. They were capable of decomposing 1.0 mM indole completely in 10, 16 and 18 days respectively. According to the results of HPLC and GC/MS, the possible pathway for the degradation was via oxindole, isatin and anthranilic acid. The three bacteria were capable of oxidizing ammonia, and the strains LPA11 and LPC24 were capable of effectively reducing nitrate and nitrite.


2009 ◽  
Vol 8 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Paula Arroyo ◽  
Gemma Ansola ◽  
Ivan Blanco ◽  
Patricia Molleda ◽  
Estanislao de Luis Calabuig ◽  
...  

This work provides information about bacterial community structure in natural wastewater treatment systems treating different types of wastewater. The diversity and composition of bacterial communities associated with the rhizosphere of Typha latifolia and Salix atrocinerea were studied and compared among two different natural wastewater treatment systems, using the direct sequencing of the 16S ribosomal RNA codifying genes. Phylogenetic affiliations of the bacteria detected allowed us to define the main groups present in these particular ecosystems. Moreover, bacterial community structure was studied through two diversity indices. Ten identified and five non-identified phyla were found in the samples; the phylum Proteobacteria was the predominant group in the four ecosystems. The results showed a bacterial community dominated by beta-proteobacteria and a lower diversity value in the swine wastewater treatment system. The municipal wastewater treatment system presented a high diverse community in both macrophytes (Typha latifolia and Salix atrocinerea), with gamma-proteobacteria and alpha-proteobacteria, respectively, as the most abundant groups.


2011 ◽  
Vol 108 ◽  
pp. 183-188 ◽  
Author(s):  
Yan Li Lǚ ◽  
Yan Qiu Wang ◽  
Ming Jun Shan ◽  
Da Wei Pan ◽  
Tie Feng Li ◽  
...  

The paper discusses the change regulation, characteristics and designation function of the aerobic biological phase in the biological treatment system of single reactor system for high ammonium removal over nitrite-anaerobic ammonium oxidation (SHARON-ANAMMOX) of Coal Tar Processing wastewater treatment. And soma advice is given for the adjustment and supervision of the similar biological disposing system of industrial dirty water.


Sign in / Sign up

Export Citation Format

Share Document