scholarly journals Gait pattern analysis to suggest one of factors classifying alzheimer's disease level using deep learning based on convolutional neural network

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S452
Author(s):  
Cheol-Bin Park ◽  
Hyunsu Jeong ◽  
Kyu Yeong Choi ◽  
Byeong C. Kim ◽  
Jang Jae Lee ◽  
...  
2021 ◽  
Vol 38 (5) ◽  
pp. 1557-1564
Author(s):  
Yin Chen

MRI image analysis of brain regions based on deep learning can effectively reduce the workload of doctors in reading films and improve the accuracy of diagnosis. Therefore, deep learning models have great application prospects in the classification and prediction of Alzheimer’s patients and normal people. However, the existing research has ignored the correlation between small abnormalities in local brain regions and changes in brain tissues. To this end, this paper studies an Alzheimer’s disease identification and classification model based on the convolutional neural network (CNN) with attention mechanisms. In this paper, the attention mechanisms were introduced from the regional level and the feature level, and the information of brain MRI images was fused from multiple levels to find out the correlation between the slices in brain MRI images. Then, a spatio-temporal graph CNN with dual attention mechanisms was constructed, which made the network model more attentive to the salient channel features while eliminating the impact of certain noise features. The experimental results verified the effectiveness of the constructed model in identification and classification of Alzheimer’s disease.


2006 ◽  
Vol 14 (7S_Part_10) ◽  
pp. P548-P548
Author(s):  
Jeonghwan Gwak ◽  
Jong-In Song ◽  
Kiseon Kim ◽  
Moongu Jeon ◽  
Cheolbin Park ◽  
...  

Author(s):  
Yin Dai ◽  
Daoyun Qiu ◽  
Yang Wang ◽  
Sizhe Dong ◽  
Hong-Li Wang

Alzheimer’s disease is the third most expensive disease, only after cancer and cardiopathy. It is also the fourth leading cause of death in the elderly after cardiopathy, cancer, and cerebral palsy. The disease lacks specific diagnostic criteria. At present, there is still no definitive and effective means for preclinical diagnosis and treatment. It is the only disease that cannot be prevented and cured among the world’s top ten fatal diseases. It has now been proposed as a global issue. Computer-aided diagnosis of Alzheimer’s disease (AD) is mostly based on images at this stage. This project uses multi-modality imaging MRI/PET combining with clinical scales and uses deep learning-based computer-aided diagnosis to treat AD, improves the comprehensiveness and accuracy of diagnosis. The project uses Bayesian model and convolutional neural network to train experimental data. The experiment uses the improved existing network model, LeNet-5, to design and build a 10-layer convolutional neural network. The network uses a back-propagation algorithm based on a gradient descent strategy to achieve good diagnostic results. Through the calculation of sensitivity, specificity and accuracy, the test results were evaluated, good test results were obtained.


Sign in / Sign up

Export Citation Format

Share Document