Novel binuclear manganese(III), cobalt(III) and chromium(III) complexes for the alternating ring-opening copolymerization of cyclohexene oxide and maleic anhydride

2016 ◽  
Vol 453 ◽  
pp. 222-229 ◽  
Author(s):  
Dengfeng Liu ◽  
Jing Wu ◽  
Zhiyuan Yang ◽  
Jie Kang ◽  
Ming Gong ◽  
...  
2014 ◽  
Vol 48 ◽  
pp. 69-72 ◽  
Author(s):  
Xingmei Zhang ◽  
Yaoju Liu ◽  
Yan Chen ◽  
Zhao Zhang ◽  
Daidi Fan ◽  
...  

2016 ◽  
Vol 69 (1) ◽  
pp. 47 ◽  
Author(s):  
Dengfeng Liu ◽  
Zhao Zhang ◽  
Xingmei Zhang ◽  
Xingqiang Lü

A series of diallyl-modified (salen)MnIII complexes have been designed, synthesized, and applied in the cyclohexene oxide and maleic anhydride ring-opening copolymerization. The experimental results show that these complexes are effective in the presence of co-catalyst 4-(dimethylamino)pyridine (DMAP). Of all the five catalysts, the catalyst (salcyen)MnCl (salcyen = 2-((E)-(2-((E)-5-allyl-2-hydroxy-3-methoxybenzylideneamino)cyclohexylimino)methyl)-4-allyl-6-methoxyphenol) exhibited the best catalytic performance under the conditions applied, and the cyclohexane of diimine bridge is conjugated with the two diallyl-salen-type moieties. This conjugation can increase the electron density of the centre MnIII cation so that catalyst (salcyen)MnCl favours the formation of reaction intermediates. Moreover, the anion effect of Cl– is proved to be the best in the catalytic performances. Among the three co-catalysts (DMAP, triphenylphosphine (Ph3P), and tetra-n-butylammonium bromide (n-Bu4NBr)) tested, DMAP is the most efficient towards monomer conversion and polymer chain growth.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1651
Author(s):  
Felipe de la Cruz-Martínez ◽  
Marc Martínez de Sarasa Buchaca ◽  
Almudena del Campo-Balguerías ◽  
Juan Fernández-Baeza ◽  
Luis F. Sánchez-Barba ◽  
...  

The catalytic activity and high selectivity reported by bimetallic heteroscorpionate acetate zinc complexes in ring-opening copolymerization (ROCOP) reactions involving CO2 as substrate encouraged us to expand their use as catalysts for ROCOP of cyclohexene oxide (CHO) and cyclic anhydrides. Among the catalysts tested for the ROCOP of CHO and phthalic anhydride at different reaction conditions, the most active catalytic system was the combination of complex 3 with bis(triphenylphosphine)iminium as cocatalyst in toluene at 80 °C. Once the optimal catalytic system was determined, the scope in terms of other cyclic anhydrides was broadened. The catalytic system was capable of copolymerizing selectively and efficiently CHO with phthalic, maleic, succinic and naphthalic anhydrides to afford the corresponding polyester materials. The polyesters obtained were characterized by spectroscopic, spectrometric, and calorimetric techniques. Finally, the reaction mechanism of the catalytic system was proposed based on stoichiometric reactions.


2019 ◽  
Vol 14 ◽  
pp. 155892501984971
Author(s):  
Zheng Tian ◽  
Lisha Pan ◽  
Qing Pan

Polypropylene grafted with maleic anhydride and styrene [PP- g-(MAH- co-St)] was prepared by melt grafting. Fourier transform-infrared spectroscopy showed that maleic anhydride in the form of cyclic anhydride was successfully grafted onto the main chains of polypropylene. PP- g-(MAH- co-St) acts as a compatibilizer for the poly(propylene carbonate)/polypropylene meltblown nonwoven fabric slices. The effect of different contents and grafting proportions of PP- g-(MAH- co-St) on the structure and performance of the poly(propylene carbonate)/polypropylene slices was investigated. The poly(propylene carbonate)/polypropylene slices had favorable compatibility, tensile properties, thermal stability, and degradability, and their melt flow rates were reduced by the addition of PP- g-(MAH- co-St). Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy spectra showed that ring-opening reactions occur between the anhydride functional groups of PP- g-(MAH- co-St) and poly(propylene carbonate). Ring-opening reactions, chemical bonds, cocrystallization, increased interface adhesion forces, and reduced interfacial tension may be the mechanisms by which PP- g-(MAH- co-St) acts a compatibilizer for poly(propylene carbonate)/polypropylene slices.


2011 ◽  
Vol 239-242 ◽  
pp. 1721-1724 ◽  
Author(s):  
Xiao Qing Zheng ◽  
Li Ting Yang ◽  
Kun Peng Wang

Soybean oil-based alkyd resin was prepared using soy-based polyol, maleic anhydride and phthalic anhydride. The soy-based polyol was obtained through the epoxidization of soybean oil, followed by ring-opening with methanol and, the hydroxyl values of soybean oil-based polyols used in this reaction is 169.93 mgKOH/g. In the reactions of soy-based polyol, maleic anhydride and phthalic anhydride, the molar ratio of hydroxyl value is equal to carboxyl value and the molar ratio of maleic anhydride to phthalic anhydride is 2:1, 1:1 and 1:2, respectively. 1% hydroquinone based on total reactants was used as inhibitor of polymerization, 1% dibutyltin oxide was used as catalyst.


2020 ◽  
Vol 49 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Arron C. Deacy ◽  
Christopher B. Durr ◽  
Charlotte K. Williams

A series of heterodinuclear zinc(ii)-Group 13 catalysts are synthesised by a sequential metalation procedure. They are active catalysts for the ring opening copolymerisation of cyclohexene oxide and CO2.


1985 ◽  
Vol 14 (11) ◽  
pp. 1643-1646 ◽  
Author(s):  
Hiroyuki Yamashita ◽  
Teruaki Mukaiyama

2012 ◽  
Vol 45 (4) ◽  
pp. 1770-1776 ◽  
Author(s):  
Elham Hosseini Nejad ◽  
Carlo G. W. van Melis ◽  
Tim J. Vermeer ◽  
Cor E. Koning ◽  
Rob Duchateau

Sign in / Sign up

Export Citation Format

Share Document