scholarly journals A possible explanation for the blue spectral slope observed on B-type asteroids

Icarus ◽  
2022 ◽  
pp. 114881
Author(s):  
M.J. Loeffler ◽  
B.S. Prince
Keyword(s):  
2018 ◽  
Vol 22 (2) ◽  
pp. 1175-1192 ◽  
Author(s):  
Qian Zhang ◽  
Ciaran J. Harman ◽  
James W. Kirchner

Abstract. River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling – in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) – are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β  =  0) to Brown noise (β  =  2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb–Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of prescribed β values and gap distributions. The aliasing method, however, does not itself account for sampling irregularity, and this introduces some bias in the result. Nonetheless, the wavelet method is recommended for estimating β in irregular time series until improved methods are developed. Finally, all methods' performances depend strongly on the sampling irregularity, highlighting that the accuracy and precision of each method are data specific. Accurately quantifying the strength of fractal scaling in irregular water-quality time series remains an unresolved challenge for the hydrologic community and for other disciplines that must grapple with irregular sampling.


Author(s):  
Anupama Paul ◽  
Deepshikha Mahanta ◽  
Rohan Kumar Das ◽  
Ramesh K. Bhukya ◽  
S. R. M. Prasanna

2018 ◽  
Vol 611 ◽  
pp. A71 ◽  
Author(s):  
K. Iwasawa ◽  
V. U ◽  
J. M. Mazzarella ◽  
A. M. Medling ◽  
D. B. Sanders ◽  
...  

The ultra-luminous infrared galaxy (ULIRG) Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsecond. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with NH ~ 4 × 1023 cm−2 but also hinted at the possible presence of a Compton-thick AGN in the N nucleus, where a black hole of ~109 M⊙ is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (Γ ~ 1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesize a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (Γ = 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, deep Fe K absorption edge, and strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by NH = 1.4+0.7−0.4 × 1024 cm−2. The estimated 2−10 keV luminosity of the N source is 1.3 × 1043 erg s−1, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.


2010 ◽  
Vol 72 (4) ◽  
pp. 485-498 ◽  
Author(s):  
Luca Bracchini ◽  
Antonio Tognazzi ◽  
Arduino Massimo Dattilo ◽  
Franco Decembrini ◽  
Claudio Rossi ◽  
...  

2019 ◽  
Author(s):  
Ilya Usoskin ◽  
Pauli Väisänen ◽  
Kalevi Mursula

2018 ◽  
Vol 75 (8) ◽  
pp. 2523-2532 ◽  
Author(s):  
P. Trent Vonich ◽  
Gregory J. Hakim

Abstract Since the pioneering paper by Nastrom and Gage on aircraft-derived power spectra, significant progress has been made in understanding the wavenumber distribution of energy in Earth’s atmosphere and its implications for the intrinsic limits of weather forecasting. Improvements in tropical cyclone intensity predictions have lagged those of global weather forecasting, and limited intrinsic predictability may be partially responsible. In this study, we construct power spectra from aircraft data of over 1200 missions carried out by the National Oceanic and Atmospheric Administration (NOAA) and Air Force Reserve Command (AFRC) Hurricane Hunters. Each mission is parsed into distinct flight legs, and legs meeting a specified set of criteria are used for spectral analysis. Here, we produce power spectra composites for each category of the Saffir–Simpson scale, revealing a systematic relationship between spectral slope and storm intensity. Specifically, as storm intensity increases, we find that 1) spectral slope becomes steeper across scales from 10 to 160 km and 2) the transition zone where spectral slope begins to steepen shifts downscale.


2020 ◽  
Vol 498 (1) ◽  
pp. 1221-1238
Author(s):  
Hong Van Hoang ◽  
S Fornasier ◽  
E Quirico ◽  
P H Hasselmann ◽  
M A Barucci ◽  
...  

ABSTRACT We investigate Abydos, the final landing site of the Philae lander after its eventful landing from the Rosetta spacecraft on comet 67P/Churyumov–Gerasimenko on 2014 November 12. Over 1000 OSIRIS-level 3B images were analysed, which cover the 2014 August–2016 September timeframe, with spatial resolution ranging from 7.6 m pixel−1 to approximately 0.06 m pixel−1. We found that the Abydos site is as dark as the global 67P nucleus and spectrally red, with an average albedo of 6.5 per cent at 649 nm and a spectral slope value of about 17 per cent/(100 nm) at 50° phase angle. Similar to the whole nucleus, the Abydos site also shows phase reddening but with lower coefficients than other regions of the comet, which may imply a thinner cover of microscopically rough regolith compared to other areas. Seasonal variations, as already noticed for the whole nucleus, were also observed. We identified some potential morphological changes near the landing site implying a total mass-loss of (4.7–7.0) × 105 kg. Small spots ranging from 0.1 to 27 m2 were observed close to Abydos before and after perihelion. Their estimated water ice abundance reaches 30–40 per cent locally, indicating fresh exposures of volatiles. Their lifetime ranges from a few hours up to three months for two pre-perihelion spots. The Abydos surroundings showed a low level of cometary activity compared to other regions of the nucleus. Only a few jets are reported originating nearby Abydos, including a bright outburst that lasted for about 1 h.


2020 ◽  
Vol 496 (1) ◽  
pp. 245-268 ◽  
Author(s):  
S F Zhu (朱世甫) ◽  
W N Brandt ◽  
B Luo (罗斌) ◽  
Jianfeng Wu (武剑锋) ◽  
Y Q Xue (薛永泉) ◽  
...  

ABSTRACT Radio-loud quasars (RLQs) are more X-ray luminous than predicted by the X-ray–optical/UV relation (i.e. $L_\mathrm{x}\propto L_\mathrm{uv}^\gamma$) for radio-quiet quasars (RQQs). The excess X-ray emission depends on the radio-loudness parameter (R) and radio spectral slope (αr). We construct a uniform sample of 729 optically selected RLQs with high fractions of X-ray detections and αr measurements. We find that steep-spectrum radio quasars (SSRQs; αr ≤ −0.5) follow a quantitatively similar $L_\mathrm{x}\propto L_\mathrm{uv}^{\gamma }$ relation as that for RQQs, suggesting a common coronal origin for the X-ray emission of both SSRQs and RQQs. However, the corresponding intercept of SSRQs is larger than that for RQQs and increases with R, suggesting a connection between the radio jets and the configuration of the accretion flow. Flat-spectrum radio quasars (FSRQs; αr > −0.5) are generally more X-ray luminous than SSRQs at given Luv and R, likely involving more physical processes. The emergent picture is different from that commonly assumed where the excess X-ray emission of RLQs is attributed to the jets. We thus perform model selection to compare critically these different interpretations, which prefers the coronal scenario with a corona–jet connection. A distinct jet component is likely important for only a small portion of FSRQs. The corona–jet, disc–corona, and disc–jet connections of RLQs are likely driven by independent physical processes. Furthermore, the corona–jet connection implies that small-scale processes in the vicinity of supermassive black holes, probably associated with the magnetic flux/topology instead of black hole spin, are controlling the radio-loudness of quasars.


2017 ◽  
Vol 14 (5) ◽  
pp. 1215-1233 ◽  
Author(s):  
María Encina Aulló-Maestro ◽  
Peter Hunter ◽  
Evangelos Spyrakos ◽  
Pierre Mercatoris ◽  
Attila Kovács ◽  
...  

Abstract. The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06–9.01 m−1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350–500 nm (SCDOM(350–500)) was more variable with increasing distance from the inflow (observed range 0.0161–0.0181 nm−1 for the mouth of the main inflow and 0.0158–0.0300 nm−1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m−1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.


Sign in / Sign up

Export Citation Format

Share Document