Flow instability in parallel-channel systems with ultra-supercritical water

Author(s):  
Shijie Ouyang ◽  
Tiantian Niu ◽  
Le Dong ◽  
Xihong Zhou ◽  
Dong Yang
Author(s):  
Jinguang Zang ◽  
Xiao Yan ◽  
Yanping Huang

This chapter is mainly focused on illustrating some introductory progress on thermal hydraulic issues of supercritical water, including heat transfer characteristics, pressure loss characteristics, flow stability issues, and numerical method. These works are mainly to give a basic idea of elementary but important topics in this area. An analytical method was proposed up to predict the heat transfer coefficient and friction coefficient based on the two-layer wall function. Flow instability experiments have been carried out in a two-parallel-channel system with supercritical water, aiming to provide an up-to-date knowledge of supercritical flow instability phenomena and initial validation data for numerical analysis. The natural circulation instability of supercritical water was also investigated in the experiments.


Author(s):  
Vijay Chatoorgoon

An analytical study of static instability in parallel channels at supercritical pressure is conducted. Until now, primarily the density-wave type has been investigated and reported. This paper derives an analytical expression for the static instability in parallel channels, which lends useful insight. This topic that would be of immense value to the new reactor designs that aim to use supercritical light water on the primary side. The finding is that static instability would unlikely be a problem in a supercritical pressure reactor because of the low inlet core temperature that it would be encountered.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Edward Shitsi ◽  
Seth Kofi Debrah ◽  
Vincent Yao Agbodemegbe ◽  
Emmanuel Ampomah-Amoako

Abstract Supercritical water-cooled reactor (SCWR), which is considered as the logical extension of existing light water reactors (LWRs) (pressurized water reactor and boiling water reactor (BWR)), has the potential of increasing the efficiency of power generation to 45% compared to 33% of that of LWRs. But without the challenges of heat transfer and hydrodynamics, and reactor core design materials due to supercritical flow instability which is associated with sharp variation in fluid properties near the vicinity of the pseudo-critical temperature. Supercritical flow instability therefore needs to be addressed ahead of the deployment and operation of SCWR in the near future. The main purpose of this study is to carry out flow instability analysis in parallel channels with supercritical water. The study also aims at examining the capability of using three-dimensional (3D) simulation of turbulent flow in arbitrary regions computational continuum mechanics C++ based code (3D STAR-CCM+ CFD code) to predict flow oscillation amplitude and periods, and instability power boundaries at low-power boundary (LPB) and at high-power boundary (HPB). Parameters considered in the investigation include mass flowrate, system pressure, and gravity. Two different threshold power instability boundaries were obtained from the study. These instability power boundaries include lower threshold where stability of the parallel channel system decreases with increasing coolant inlet temperature, and upper threshold where stability of the parallel channel system increases with increasing coolant inlet temperature. From the results of the investigation, it can be found that: (1) for LPB at 23 MPa, only lower threshold was obtained as flow instability power boundary; and for HPB at 23 MPa, both lower and upper thresholds were obtained as flow instability power boundaries. The numerical findings quite well agree with the experimental findings at 23 MPa for both LPB and HPB; (2) only lower threshold was obtained as flow instability power boundary at both 23 MPa and 25 MPa for LPB. For HPB, both lower and upper thresholds were obtained as flow instability power boundaries at both 23 MPa and 25 MPa; (3) only lower threshold was obtained as flow instability power boundary for the parallel channel system with or without gravity influence for LPB. For HPB, both lower and upper threshold flow instability power boundaries were obtained for the parallel channel system with gravity influence, but only lower threshold flow instability power boundary was obtained for system without gravity influence; (4) only lower threshold was obtained as flow instability power boundary at system mass flowrates of 125 kg/h and 145 kg/h for LPB. For HPB, both lower and upper threshold flow instability power boundaries were obtained for system mass flowrate of 125 kg/h, but only lower threshold flow instability power boundary was obtained for system mass flowrate of 145 kg/h. For both LPB and HPB, the numerical findings agree quite well with the experimental results for a system operated at 125 kg/h and 145 kg/h; (5) the investigated parameters such as mass flowrate, pressure, and gravity have significant effects on amplitude of mass flow oscillation, but have little effects on the period of mass flow oscillation for both LPB and HPB. Results from the numerical simulation were compared with the results from the experiment for both LPB and HPB. The numerical amplitude results obtained were far less than the amplitude results obtained from the experiment. But there was no significant difference between the oscillation periods obtained from both the numerical simulation and experiment. (6) Flow instability studies including predicting flow oscillation amplitude and periods, and instability power boundaries could be carried out using 3D STAR-CCM+ CFD code. The effects of heating structures on flow instability results have not been considered in this study. Previous studies have shown that including heating structures in geometrical models for numerical studies may have effects on flow instability results. More experimental studies are needed for validation of similar numerical studies carried out at supercritical pressures using various numerical tools.


2012 ◽  
Vol 49 ◽  
pp. 70-80 ◽  
Author(s):  
Xiaoyan Tian ◽  
Wenxi Tian ◽  
Dahuan Zhu ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
...  

Author(s):  
Hee Joon Lee ◽  
Dongyao Liu ◽  
Shi-Chune Yao

Experiments were conducted on evaporative micro-channel systems of water, containing 48 parallel channels of 353 μm hydraulic diameter. The general correlation of two-phase pressure drop for an initial design purpose of evaporative micro-channel systems reported in [1] has been validated. For the water boiling in micro-channels, flow instability was observed. The instability criterion, proposed by Kandlikar [2], is able to predict the water experimental results. However, further examination of his criterion revealed that it can not predict the results of Brutin and Tadrist’s data of n-pentane. This is because the Bond number of water is 0.01, but 0.33 for n-pentane. As a result, the growing bubble of n-pentane may not cover the whole length of the micro-channel. A general expression of the effective length of squeezed bubbles in micro-channel was established for fluids at a wide range of Bond number. Using this proposed effective length, the Brutin and Tadrist’s experimental instability data can also be predicted satisfactorily.


Author(s):  
Jingjing Li ◽  
Tao Zhou ◽  
Mingqiang Song ◽  
Yanping Huang

3-D simulation of supercritical water flow instability in parallel channels and a natural circulation loop are presented. Results are obtained for various heating powers. The results show that, in the natural circulation loop the steady state mass flow will firstly increase with the heating power and then decrease. And mass flow grows with the growing of the inlet temperature, decreases with the growing of system pressure. Under a large heat flux, the parallel channels will experience the flow instability of out phase mass flow oscillation. And the oscillation amplitude will grow with the growing of heating power. At last, the numerical simulations are validated by B.T. Swapnalee’s experience formula.


2016 ◽  
Vol 2 (3) ◽  
Author(s):  
Yuzhou Chen ◽  
Chunsheng Yang ◽  
Minfu Zhao ◽  
Keming Bi ◽  
Kaiwen Du

An experiment of natural circulation of supercritical water in parallel channels was performed in bare tubes of inner diameter 7.98 mm and heated length 1.3 m, covering the ranges of pressure of 24.7–25.5 MPa, mass flux of 400–1000  kg/m2 s, and heat flux of up to 1.83  MW/m2. When the heat flux reached 1.12  MW/m2, the outlet water temperature jumped from 325°C to 360°C, associated with a decrease in the flow rate and an initiation of dynamic instability. When the heat flux exceeded 1.39  MW/m2, the flow instability was stronger, and the flow rate increased in one channel and decreased in another one. Until the heat flux reached 1.61  MW/m2, the outlet water temperatures of two channels reached the pseudocritical point, and the flow rates of two channels tended to close each other. The experiment with a single heated channel was also performed for comparison. The measurements on the heat-transfer coefficients (HTCs) were compared to the calculations by the Bishop et al., Jackson’s, and Mokry et al. correlations, showing different agreements within various conditions.


Sign in / Sign up

Export Citation Format

Share Document