An Experiment of Natural Circulation Flow and Heat Transfer With Supercritical Water in Parallel Channels

2016 ◽  
Vol 2 (3) ◽  
Author(s):  
Yuzhou Chen ◽  
Chunsheng Yang ◽  
Minfu Zhao ◽  
Keming Bi ◽  
Kaiwen Du

An experiment of natural circulation of supercritical water in parallel channels was performed in bare tubes of inner diameter 7.98 mm and heated length 1.3 m, covering the ranges of pressure of 24.7–25.5 MPa, mass flux of 400–1000  kg/m2 s, and heat flux of up to 1.83  MW/m2. When the heat flux reached 1.12  MW/m2, the outlet water temperature jumped from 325°C to 360°C, associated with a decrease in the flow rate and an initiation of dynamic instability. When the heat flux exceeded 1.39  MW/m2, the flow instability was stronger, and the flow rate increased in one channel and decreased in another one. Until the heat flux reached 1.61  MW/m2, the outlet water temperatures of two channels reached the pseudocritical point, and the flow rates of two channels tended to close each other. The experiment with a single heated channel was also performed for comparison. The measurements on the heat-transfer coefficients (HTCs) were compared to the calculations by the Bishop et al., Jackson’s, and Mokry et al. correlations, showing different agreements within various conditions.

Vestnik MEI ◽  
2021 ◽  
pp. 19-26
Author(s):  
Valentin S. Shteling ◽  
◽  
Vladimir V. Ilyin ◽  
Aleksandr T. Komov ◽  
Petr P. Shcherbakov ◽  
...  

The effectiveness of stabilizing the surface temperature by a dispersed coolant flow is experimentally studied on a bench simulating energy intensive elements of thermonuclear installations A test section in which the maximum heat flux density can be obtained when being subjected to high-frequency heating was developed, manufactured, and assembled. The test section was heated using a VCh-60AV HF generator with a frequency of not lower than 30 kHz. A hydraulic nozzle with a conical insert was used as the dispersing device. Techniques for carrying out an experiment on studying a stationary heat transfer regime and for calculating thermophysical quantities were developed. The experimental data were obtained in the stationary heat transfer regime with the following range of coolant operating parameters: water pressure equal to 0.38 MPa, water mass flow rate equal to 5.35 ml/s, and induction heating power equal to 6--19 kW. Based on the data obtained, the removed heat flux density and the heat transfer coefficients were calculated for each stationary heat transfer regime. The dependences of the heat transfer coefficient on the removed heat flux density and of the removed heat flux density on the temperature difference have been obtained. High values of heat transfer coefficients and heat flux density at a relatively low coolant flow rate were achieved in the experiments.


Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

The effects of dissolved air in the dielectric liquid FC-77 on flow boiling in a microchannel heat sink containing 10 parallel channels, each 500 μm wide and 2.5 mm deep, were experimentally investigated. Experiments were conducted before and after degassing, at three flow rates in the range of 30 to 50 ml/min. The dissolved air resulted in a significant reduction in wall temperature at which bubbles were first observed in the microchannels. Analysis of the results suggests that the bubbles observed initially in the undegassed liquid were most likely air bubbles. Once the boiling process is initiated, the wall temperature continues to increase for the undegassed liquid, while it remains relatively unchanged in the case of the degassed liquid. Prior to the inception of boiling in the degassed liquid, the heat transfer coefficients with the undegassed liquid were 300–500% higher than for degassed liquid, depending on the flow rate. The heat transfer coefficients for both cases reach similar values at high heat fluxes (over 120 kW/m2) once the boiling process with the degassed liquid was well established. The boiling process induced a significant increase in pressure drop relative to single-phase flow; the pressure drop for undegassed liquid was measured to be higher than for degassed liquid once the boiling process became well established in both cases. Flow instabilities were induced by the boiling process, and the magnitude of the instability was quantified using the standard deviation of the measured pressure drop at a given heat flux. It was found that the magnitude of flow instability increased with increasing heat flux in both the undegassed and degassed liquids, with greater flow instability noted in the undegassed liquid.


2006 ◽  
Vol 128 (4) ◽  
pp. 398-404 ◽  
Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

The effects of dissolved air in the dielectric liquid FC-77 on flow boiling in a microchannel heat sink containing ten parallel channels, each 500μm wide and 2.5mm deep, were experimentally investigated. Experiments were conducted before and after degassing, at three flow rates in the range of 30-50ml∕min. The dissolved air resulted in a significant reduction in wall temperature at which bubbles were first observed in the microchannels. Analysis of the results suggests that the bubbles observed initially in the undegassed liquid were most likely air bubbles. Once the boiling process is initiated, the wall temperature continues to increase for the undegassed liquid, whereas it remains relatively unchanged in the case of the degassed liquid. Prior to the inception of boiling in the degassed liquid, the heat transfer coefficients with the undegassed liquid were 300-500% higher than for degassed liquid, depending on the flow rate. The heat transfer coefficients for both cases reach similar values at high heat fluxes (>120kW∕m2) once the boiling process with the degassed liquid was well established. The boiling process induced a significant increase in pressure drop relative to single-phase flow; the pressure drop for undegassed liquid was measured to be higher than for degassed liquid once the boiling process became well established in both cases. Flow instabilities were induced by the boiling process, and the magnitude of the instability was quantified using the standard deviation of the measured pressure drop at a given heat flux. It was found that the magnitude of flow instability increased with increasing heat flux in both the undegassed and degassed liquids, with greater flow instability noted in the undegassed liquid.


Author(s):  
Peng Xu ◽  
Tao Zhou ◽  
Jialei Zhang ◽  
Juan Chen ◽  
Zhongguan Fu

Abstract There are many factors that can affect the heat transfer coefficient (HTC) of supercritical water in forced and natural circulation. The correlation between the factors with the HTC under different circulation modes has an important influence on the reactor core design. By extracting the experimental data of supercritical water in forced circulation and natural circulation, the grey correlation model was used to analyze the relational degree between these factors with HTC. The results show that: Under the condition of forced circulation, there is a positive correlation between the inlet temperature, mass flow velocity, the thickness of the grid body with the HTC of supercritical water, and the order is: mass flow velocity > inlet temperature > the thickness of the grid body; there is a negative correlation between the pressure, heat flux with the heat transfer coefficient of supercritical water, and the order is: pressure > heat flux. Under the condition of natural circulation, there is a positively correlation between heating power, inlet temperature and circulation flow rate with HTC, and the order of magnitude is: circulation flow rate > heating power > inlet temperature; diameter and pressure are negatively correlated with heat transfer coefficient, and the order of magnitude is: pressure > diameter. In the two circulation modes, mass flow rate is an important factor affecting the heat transfer capacity of supercritical water, while the effect of heat flux on the heat transfer coefficient is contrary.


Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


1999 ◽  
Author(s):  
Wayne N. O. Turnbull ◽  
Patrick H. Oosthuizen

Abstract A new experimental technique has been developed that permits the determination of local surface heat transfer coefficients on surfaces without requirement for calibration of the temperature-sensing device. The technique uses the phase delay that develops between the surface temperature response and an imposed periodic surface heat flux. This phase delay is dependent upon the thermophysical properties of the model, the heat flux driving frequency and the local heat transfer coefficient. It is not a function of magnitude of the local heat flux. Since only phase differences are being measured there is no requirement to calibrate the temperature sensor, in this instance a thermochromic liquid crystal. Application of a periodic surface heat flux to a flat plate resulted in a surface colour response that was a function of time. This response was captured using a standard colour CCD camera and the phase delay angles were determined using Fourier analysis. Only the 8 bit G component of the captured RGB signal was required, there being no need to determine a Hue value. From these experimentally obtained phase delay angles it was possible to determine heat transfer coefficients that compared well with those predicted using a standard correlation.


Author(s):  
Koichi Araga ◽  
Keisuke Okamoto ◽  
Keiji Murata

This paper presents an experimental investigation of the forced convective boiling of refrigerant HCFC123 in a mini-tube. The inner diameters of the test tubes, D, were 0.51 mm and 0.30 mm. First, two-phase frictional pressure drops were measured under adiabatic conditions and compared with the correlations for conventional tubes. The frictional pressure drop data were lower than the correlation for conventional tubes. However, the data were qualitatively in accord with those for conventional tubes and were correlated in the form φL2−1/Xtt. Next, heat transfer coefficients were measured under the conditions of constant heat flux and compared with those for conventional tubes and for pool boiling. The heat transfer characteristics for mini-tubes were different from those for conventional tubes and quite complicated. The heat transfer coefficients for D = 0.51 mm increased with heat flux but were almost independent of mass flux. Although the heat transfer coefficients were higher than those for a conventional tube with D = 10.3 mm and for pool boiling in the low quality region, they decreased gradually with increasing quality. The heat transfer coefficients for D = 0.30 mm were higher than those for D = 0.51 mm and were almost independent of both mass flux and heat flux.


1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


Sign in / Sign up

Export Citation Format

Share Document