Predicting cancer cells progression via entropy generation based on AR and ARMA models

Author(s):  
Tayebeh Modaresi Movahed ◽  
Hamed Jalaly Bidgoly ◽  
Mohammad Hassan Khoshgoftar Manesh ◽  
Hamid Reza Mirzaei
Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 147-153
Author(s):  
Salvatore Capotosto ◽  
Bailey Smoot ◽  
Randal Hallford ◽  
Preet Sharma

It is rather difficult to understand biological systems from a physics point of view, and understanding systems such as cancer is even more challenging. There are many factors affecting the dynamics of a cancer cell, and they can be understood approximately. We can apply the principles of non-equilibrium statistical mechanics and thermodynamics to have a greater understanding of such systems. Very much like other systems, living systems also transform energy and matter during metabolism, and according to the First Law of Thermodynamics, this could be described as a capacity to transform energy in a controlled way. The properties of cancer cells are different from regular cells. Cancer is a name used for a set of malignant cells that lost control over normal growth. Cancer can be described as an open, complex, dynamic, and self-organizing system. Cancer is considered as a non-linear dynamic system, which can be explained to a good degree using techniques from non-equilibrium statistical mechanics and thermodynamics. We will also look at such a system through its entropy due to to the interaction with the environment and within the system itself. Here, we have studied the entropy generation versus the entropy production approach, and have calculated the entropy of growth of cancer cells using Fokker-Planck equations.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Wu Jifeng ◽  
Chen Xiaolin

On the basis of light microscopic observation, the ultrastructural localization of CEA in gastric cancer was studied by immunoelectron microscopic technique. The distribution of CEA in gastric cancer and its biological significance and the mechanism of abnormal distribution of CEA were further discussed.Among 104 surgically resected specimens of gastric cancer with PAP method at light microscopic level, the incidence of CEA(+) was 85.58%. All of mucinous carcinoma exhibited CEA(+). In tubular adenocarcinoma the incidence of CEA(+) showed a tendency to rising with the increase of degree of differentiation. In normal epithelia and intestinal metaplasia CEA was faintly present and was found only in the luminal surface. The CEA staining patterns in cancer cells were of three types--- cytoplasmic, membranous and weak reactive type. The ultrastructural localization of CEA in 14 cases of gastric cancer was studied by immunoelectron microscopic technique.There was a little or no CEA in the microvilli of normal epithelia. In intestinal metaplasia CEA was found on the microvilli of absorptive cells and among the mucus particles of goblet cells. In gastric cancer CEA was also distributed on the lateral and basal surface or even over the entire surface of cancer cells and lost their polarity completely. Many studies had proved that the alterations in surface glycoprotein were characteristic changes of tumor cells. The antigenic determinant of CEA was glycoprotein, so the alterations of tumor-associated surface glycoprotein opened up a new way for the diagnosis of tumors.


2020 ◽  
Vol 56 (65) ◽  
pp. 9332-9335
Author(s):  
Sandra Estalayo-Adrián ◽  
Salvador Blasco ◽  
Sandra A. Bright ◽  
Gavin J. McManus ◽  
Guillermo Orellana ◽  
...  

Two new water-soluble amphiphilic Ru(ii) polypyridyl complexes were synthesised and their photophysical and photobiological properties evaluated; both complexes showed a rapid cellular uptake and phototoxicity against HeLa cervical cancer cells.


2010 ◽  
Vol 34 (8) ◽  
pp. S49-S49
Author(s):  
Lei Wang ◽  
Xun Zhou ◽  
Lihong Zhou ◽  
Yong Chen ◽  
Xun Zhu ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A31-A31
Author(s):  
H KATAOKA ◽  
T JOH ◽  
T OHSHIMA ◽  
Y ITOH ◽  
K SENOO ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A82-A82 ◽  
Author(s):  
S MAEDA ◽  
Y MITSUNO ◽  
Y HIRATA ◽  
M AKANUMA ◽  
H YOSHIDA ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A615-A615
Author(s):  
M GORSCHLUETER ◽  
B SCHOETTKER ◽  
A MAERTEN ◽  
C ZISKE

2001 ◽  
Vol 120 (5) ◽  
pp. A493-A493
Author(s):  
J HARDWICK ◽  
G VANDENBRINK ◽  
S VANDEVENTER ◽  
M PEPPELENBOSCH

2001 ◽  
Vol 120 (5) ◽  
pp. A660-A660
Author(s):  
Y MURAYAMA ◽  
Y SHINOMURA ◽  
J MIYAGAWA ◽  
H YOSHIDA ◽  
T KIYOHARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document