A regulatory perspective on whether the system of radiation protection is fit for purpose

2012 ◽  
Vol 41 (3-4) ◽  
pp. 57-63 ◽  
Author(s):  
M.A. Boyd

The system of radiation protection has its origins in the early efforts to protect people from x rays and radium. It was at the Second International Congress of Radiology in Stockholm in 1928 where the first radiation protection recommendations were adopted. The system of protection steadily evolved as new sources of exposure arose and understanding of radiation-related health risks improved. Safeguarding against these risks has required regulators to set enforceable (i.e. measurable) standards. From erythema dose to tolerance dose, critical organ dose to effective dose equivalent, and now effective dose, the units used to set these limits have evolved along with the science underpinning them. Similarly, the definition of the person or group being protected has changed - from Standard Man to Reference Man to Reference Person, with age and gender differences now considered explicitly. As regulators look towards implementing the changes in the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), there remain questions about how to translate an optimisation-based system of constraints and reference levels into the more familiar regime of enforceable limits. Nevertheless, as the new ICRP Recommendations are refinements of a system that did the job it was designed to do more than adequately, so too will the new system of radiation protection be fit for purpose.

2021 ◽  
Vol 193 (1) ◽  
pp. 43-54
Author(s):  
Yasuda Mitsuyoshi ◽  
Funada Tomoya ◽  
Sato Hisaya ◽  
Kato Kyoichi

Abstract As chest x rays involve risks of patients falling, radiologic technologists (technologists) commonly assist patients, and as the assistance takes place near the patients, the eye lenses of the technologists are exposed to radiation. The recommendations of the International Commission on Radiological Protection suggest that the risk of developing cataracts due to lens exposure is high, and this makes it necessary to reduce and minimize the exposure. The present study investigated the positions of technologists assisting patients that will minimize exposure of the eye lens to radiation. The results showed that it is possible to reduce the exposure by assisting from the following positions: 50% at the sides rather than diagonally behind, 10% at the right side of the patient rather than the left and 40% at 250 mm away from the patient. The maximum reduction with radiation protection glasses was 54% with 0.07 mmPb and 72% with 0.88 mmPb.


2012 ◽  
Vol 41 (3-4) ◽  
pp. 117-123 ◽  
Author(s):  
H-G. Menzel ◽  
J. Harrison

Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of the relative contribution of each tissue to the radiation detriment of stochastic effects from whole-body low-linear energy transfer irradiations. The rounded values of tissue and radiation weighting factors are chosen by ICRP on the basis of available scientific data from radiation epidemiology and radiation biology, and they are therefore subject to adjustment as new scientific information becomes available. Effective dose is a single, risk-related dosimetric quantity, used prospectively for planning and optimisation purposes, and retrospectively for demonstrating compliance with dose limits and constraints. In practical radiation protection, it has proven to be extremely useful.


2020 ◽  
Vol 13 (3) ◽  
pp. 110-122
Author(s):  
S. A. Kalnitsky ◽  
E. R. Ladanova

The purpose of this work is to investigative radiation protection of the female breast in different X-ray examinations, including radiography. It is actual, because Publication ICRP №103 takes female breast to maximum irradiating organs. Analysed: risk of ionizing radiation, FB cancer, volume and dynamics X-ray examinations, female breast organ dose and effective dose. In conformity with data of Publication ICRP №103, effective dose of patients at mammography increased in 2,4 time and reach 0,48 mSv for examination as compared with 0,20 mSv with data of Publication ICRP №60. It is shown, that among different cancer, female breast cancer takes first place and constancy increased. Quantity of mammograms for 10 years increased in 2 time and collective dose increased in 2 times at last 7 years. Female breast average organ dose in mammography is 0,96 mGy and effective dose 0,05 mSv. It is only a part of summary irradiation from all X-ray examinations. The average mean value female breast organ dose of all radiography is 1,84 mGy (anterio-posterior projection – 1,57 mGy, lateral – 2,91 mGy) and effective dose – 0,25 mSv (anterioposterior – 0,26 mSv, lateral – 0,17 mSv). Considerable female breast irradiation is caused by X-ray spine examinations (thorax and lumbar). It is necessary to ensure radiation protection of female breast in diagnostic radiology, including quality control and optimization. Also need to shut female breast by X-ray protection apron, particularly in the lateral projection.


Dose-Response ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 155932582110284
Author(s):  
Abdulrahman A. Alfuraih ◽  
Khalid Alzimami ◽  
Andy K. Ma

This work concerns study of self-absorption factor (SAF) and dose rate constants of zirconium-89 (89Zr) for the purpose of radiation protection in positron emission tomography (PET) and to compare them with those of 18F-deoxyglucose (18F-FDG). We analyzed the emitted energy spectra by 18F and 89Zr through anthropomorphic phantom and calculated the absorbed energy using Monte Carlo method. The dose rate constants for both radionuclides were estimated with 2 different fluence-to-effective dose conversion coefficients. Our estimated SAF value of 0.65 for 18F agreed with the recommendation of the American Association of Physicists in Medicine (AAPM). The SAF for 89Zr was in the range of 0.61-0.66 depending on the biodistribution. Using the fluence-to-effective dose conversion coefficients recommended jointly by the American National Standards Institute and the American Nuclear Society (ANSI/ANS), the dose rate at 1 m from the patient for 18F was 0.143 μSv·MBq−1·hr−1, which is consistent with the AAPM recommendation, while that for 89Zr was 0.154 μSv·MBq−1·hr−1. With the conversion coefficients currently recommended by the International Committee on Radiological Protection (ICRP), the dose rate estimates were lowered by 2.8% and 2.6% for 89Zr and 18F, respectively. Also, we observed that the AAPM derived dose is an overestimation near the patient, compared to our simulations, which can be explained by the biodistribution nature and the assumption of the point source. Thus, we proposed new radiation protection factors for 89Zr radionuclide.


2021 ◽  
pp. 112972982110011
Author(s):  
Andreana De Mauri ◽  
Roberta Matheoud ◽  
Giuseppe Guzzardi ◽  
Valentina Vaccarone ◽  
Paola David ◽  
...  

Background: Advances in medical imaging and interventional procedures have been associated with increased exposure to ionizing radiation. Thus, the International Commission on Radiological Protection (ICRP) established uniform safety standards to protect the general public against the dangers arising from ionizing radiations. In Europe, the ICRP standards are listed in the European Directive 2013/59/EURATOM, which should be transposed into national legislation by member states. They require that the administered dose must be part of the radiological report and identify the practitioners’ responsibilities in justifying and optimizing the dose and correctly informing the patient. Despite these indications, the literature lacks information about the dose from fluoroscopically inserted dialysis tunneled central venous catheters (td-CVC). This study aimed to quantify the effective dose and organ dose to relevant organs in td-CVC to comply with the EU statements. Methods: We revised fluoroscopically-guided procedures of td-CVC insertion, considering dose per area product, fluoroscopic time, effective dose, organ dose, and anatomical district. We also compared these parameters with those of fluoroscopically inserted oncological central venous devices (Port-a-cath). Results: The dose-area product, fluoroscopic time, and organ dose for td-CVC were 13 ± 22.2 Gy*cm2, 81 ± 129 s, and 1.9 ± 3.3 mSv. The radiological parameters for the left internal jugular, subclavian and femoral veins were similar but higher than for the right internal jugular vein. The radiological parameters were significantly higher for td-CVC than for Port-a-cath. Conclusions: Fluoroscopically inserted td-CVC are associated with a relatively low dose of ionizing radiation, with considerable variability due to the anatomical puncture site and previous accesses’ history. In light of the European Directive, it is a concern for nephrologists to be aware of the administered ionizing dose to comply with their legal responsibilities.


2005 ◽  
Vol 44 (05) ◽  
pp. 119-130 ◽  
Author(s):  
P. Schnell-Inderst ◽  
D. Noßke ◽  
M. Weiss ◽  
A. Stamm-Meyer ◽  
G. Brix ◽  
...  

Summary:The aim of this study was to estimate both the frequency and effective dose of nuclear medicine procedures performed in Germany between 1996 and 2000 for different subgroups of patients. Methods: Electronically archived data from 14 hospitals and 10 private practices were restored and statistically analyzed. The effective dose per examination was calculated according to ICRP publication 80 using the tissue weighting factors given in ICRP publication 60. Based on the data collected, statistical parameters were computed to characterize the frequency and effective dose of the various nuclear medicine procedures. Results: In total, 604,771 nuclear medicine procedures performed in 433,709 patients were analyzed. On average, 1.4 examinations were carried out per patient and year. The median effective dose was 1.7 [5.-95. percentile; mean: 0.4–8.5; 2.9] mSv per examination and 2.3 [0.5–11.2; 3.5] mSv per patient. Interestingly, the mean effective dose per examination, but not the number of examinations per year increased with the age of the patients. Most frequent were examinations of the thyroid (36.7%), the skeleton (27.1%) and the cardiovascular system (11.1%), which were associated with a median effective dose of 0.5 [0.5–1.1; 0.7] mSv, 3.4 [2.9–5.1; 3.6] mSv and 7.3 [3.2–21.0; 9.5] mSv, respectively. Over the five-year period examined, the total annual number of PET procedures (222.3%) as well as of examinations of thyroid (24.5%), skeleton (17.9%), and the cardiovascular system (14.9%) increased markedly, whereas a decrease was observed for brain (-39.3%), lung (-20.2%) and renal (-15.0%) scans. Conclusion: The age- and gender-specific data presented in this study provide detailed public health information on both the current status and recent trends in the practice of diagnostic nuclear medicine examinations.


2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Fahad A. Zaman ◽  
Lawrence W. Townsend

Solar particle events (SPEs) can pose serious threats for future crewed missions to the Moon. Historically, there have been several extreme SPEs that could have been dangerous for astronauts, and thus analyzing their potential risk on humans is an important step towards space exploration. In this work, we study the effects of a well-known SPE that occurred on 23 February 1956 on a mission in cis-Lunar space. Estimates of the proton fluence spectra of the February 1956 event were obtained from three different parameterized models published within the past 12 years. The studied geometry consists of a female phantom in the center of spherical spacecraft shielded by aluminum area densities ranging from 0.4 to 40 g cm−2. The effective dose, along with lens, skin, blood forming organs, heart, and central nervous system doses, were tallied using the On Line Tool for the Assessment of Radiation In Space (OLTARIS), which utilizes the High Z and Energy TRansport code (HZETRN), a deterministic radiation transport code. Based on the parameterized models, the results herein show that thicknesses comparable to a spacesuit might not protect against severe health consequences from a February 1956 category event. They also show that a minimum aluminum shielding of around 20 g cm−2 is sufficient to keep the effective dose and critical organ doses below NASA’s permissible limits for such event. In addition, except for very thin shielding, the input models produced results that were within good agreement, where the doses obtained from the three proton fluence spectra tended to converge with slight differences as the shielding thickness increases.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


Sign in / Sign up

Export Citation Format

Share Document