scholarly journals A Torque Vectoring Optimal Control Strategy for Combined Vehicle Dynamics Performance Enhancement and Electric Motor Ageing Minimisation * *The authors would like to acknowledge the financial support from EPSRC via the ‘FUTURE Vehicle’ project (grant number EP/I038586/1) and the Impact Acceleration Account (grant number EP/K503927/1).

2016 ◽  
Vol 49 (11) ◽  
pp. 412-417 ◽  
Author(s):  
Angelos Kampanakis ◽  
Efstathios Siampis ◽  
Efstathios Velenis ◽  
Stefano Longo
Author(s):  
Atokolo William ◽  
Akpa Johnson ◽  
Daniel Musa Alih ◽  
Olayemi Kehinde Samuel ◽  
C. E. Mbah Godwin

This work is aimed at formulating a mathematical model for the control of zika virus infection using Sterile Insect Technology (SIT). The model is extended to incorporate optimal control strategy by introducing three control measures. The optimal control is aimed at minimizing the number of Exposed human, Infected human and the total number of Mosquitoes in a population and as such reducing contacts between mosquitoes and human, human to human and above all, eliminates the population of Mosquitoes. The Pontryagin’s maximum principle was used to obtain the necessary conditions, find the optimality system of our model and to obtain solution to the control problem. Numerical simulations result shows that; reduction in the number of Exposed human population, Infected human population and reduction in the entire population of Mosquito population is best achieved using the optimal control strategy.


Kybernetes ◽  
2015 ◽  
Vol 44 (3) ◽  
pp. 475-486 ◽  
Author(s):  
Kuan Yang ◽  
Ermei Wang ◽  
Yinggao Zhou ◽  
Kai Zhou

Purpose – The purpose of this paper is to use analytical method and optimization tools to suggest time-optimal vaccination program for a basic SIR epidemic model with mass action contact rate when supply is limited. Design/methodology/approach – The Lagrange Multiplier Method and Pontryagin’s Maximum Principle are used to explore optimal control strategy and obtain analytical solution for the control system to minimize the total cost of disease with boundary constraint. The numerical simulation is done with Matlab using the sequential linear programming method to illustrate the impact of parameters. Findings – The result highlighted that the optimal control strategy is Bang-Bang control – to vaccinate with maximal effort until either all of the resources are used up or epidemic is over, and the optimal strategies and total cost of vaccination are usually dependent on whether there is any constraint of resource, however, the optimal strategy is independent on the relative cost of vaccination when the supply is limited. Practical implications – The research indicate a practical view that the enhancement of daily vaccination rate is critical to make effective initiatives to prevent epidemic from out breaking and reduce the costs of control. Originality/value – The analysis of the time-optimal application of outbreak control is of clear practical value and the introducing of resource constraint in epidemic control is of realistic sense, these are beneficial for epidemiologists and public health officials.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Abdelfatah Kouidere ◽  
Omar Balatif ◽  
Hanane Ferjouchia ◽  
Abdesslam Boutayeb ◽  
Mostafa Rachik

Nowadays, Diabetes is one of the most common diseases, which has a huge and growing socio-economic burden affecting individuals, families, and the whole society. In this paper, we propose an optimal control approach modeling the evolution from pre-diabetes to diabetes with and without complications and the effect of living environment. We show the existence of an optimal control and then use a numerical implicit finite-difference method to monitor the size of population in each compartment.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Omar Zakary ◽  
Sara Bidah ◽  
Mostafa Rachik ◽  
Hanane Ferjouchia

In this paper, we aim to estimate and predict the situation of the new coronavirus pandemic (COVID-19) in countries under quarantine measures. First, we present a new discrete-time mathematical model describing the evolution of the COVID-19 in a population under quarantine. We are motivated by the growing numbers of infections and deaths in countries under quarantine to investigate potential causes. We consider two new classes of people, those who respect the quarantine and stay at home, and those who do not respect the quarantine and leave their homes for one or another reason. Second, we use real published data to estimate the parameters of the model, and then, we estimate these populations in Morocco. We investigate the impact of people who underestimate the quarantine by considering an optimal control strategy to reduce this category and then reducing the number of the population at risk in Morocco. We provide several simulations to support our findings.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Hamza Boutayeb ◽  
Sara Bidah ◽  
Omar Zakary ◽  
Mostafa Rachik

In this paper, we consider a new discrete-time model that describes the spread of information by sharing in some kind of online environments such as Facebook, WhatsApp, and Twitter. The impact of sharing on the information amount is investigated, which is incorporated in the considered model as a supplement compartment. We consider the possible interactions between individuals and information on the Internet, such as posts, images, and videos. The theory of control is used to show the effectiveness of our optimal control strategy in reducing the information amount and sharers and then decreases the dissemination of false information that can lead to annoying situations and unstable state in the society. Numerical simulations are performed to investigate several scenarios before and after the use of our strategy of control. Furthermore, sensitivity analysis of the information amount on parameters is simulated and discussed.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 167
Author(s):  
Xue Lin ◽  
Lixia Sun ◽  
Ping Ju ◽  
Hongyu Li

With the penetration of renewable generation, electric vehicles and other random factors in power systems, the stochastic disturbances are increasing significantly, which are necessary to be handled for guarantying the security of systems. A novel stochastic optimal control strategy is proposed in this paper to reduce the impact of such stochastic continuous disturbances on power systems. The proposed method is effective in solving the problems caused by the stochastic continuous disturbances and has two significant advantages. First, a simplified and effective solution is proposed to analyze the system influenced by the stochastic disturbances. Second, a novel optimal control strategy is proposed in this paper to effectively reduce the impact of stochastic continuous disturbances. To be specific, a novel excitation controlled power systems model with stochastic disturbances is built in the quasi-generalized Hamiltonian form, which is further simplified into a lower-dimension model through the stochastic averaging method. Based on this Itô equation, a novel optimal control strategy to achieve the intra-region probability maximization is established for power systems by using the dynamic programming method. Finally, the intra-region probability increases in controlled systems, which confirms the effectiveness of the proposed control strategy. The proposed control method has advantages on controlling the fluctuation of system state variables within a desired region under the influence of stochastic disturbances, which means improving the security of stochastic systems. With more stochasticity in the future, the proposed control method based on the stochastic theory will play a novel way to relieve the impact of stochastic disturbances.


2012 ◽  
Vol 38 (6) ◽  
pp. 1017 ◽  
Author(s):  
Jia-Yan ZHANG ◽  
Zhong-Hai MA ◽  
Xiao-Bin QIAN ◽  
Shao-Ming LI ◽  
Jia-Hong LANG

Sign in / Sign up

Export Citation Format

Share Document