scholarly journals Analysis of aperiodic surface topography: The impact of measurement uncertainty on surface parameter correlation

2021 ◽  
Vol 54 (1) ◽  
pp. 1236-1240
Author(s):  
Max Radetzky ◽  
Stefan Bracke
Polymers ◽  
2015 ◽  
Vol 7 (11) ◽  
pp. 2371-2388 ◽  
Author(s):  
Andres Diaz Lantada ◽  
Hernán Alarcón Iniesta ◽  
Josefa García-Ruíz

Author(s):  
Maria Cristina Dijmarescu

Destructive and non-destructive testing of materials present a rapid expansion given by the increase in market demand caused by the desire to obtain an increasingly better quality of products. The continuous increase in quality demands leads directly to the need to implement and modernize the techniques, methods, and equipment used for quality control. Consequently, the need for product testing services has a rapid growth. This paper presents the strength and weaknesses of implementing IT tools for the estimation of the measurement uncertainty in testing laboratories and the impact of these tools on the economic part


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Chengcheng Liang ◽  
Chaosheng Song ◽  
Caichao Zhu ◽  
Yawen Wang ◽  
Siyuan Liu ◽  
...  

Abstract Tool errors are inevitable in an actual gear-manufacturing environment and may directly affect the accuracy of machined tooth surfaces. In this paper, tool errors including spheric radius, pressure angle, rake angle, regrind angle, and cutting side relief angle errors for three-face blade are defined and considered to establish the accurate tooth surface mathematical model for face-hobbed hypoid gears based on the manufacturing process and the meshing theory. The simulation flowchart for tooth surface modeling and tooth surface topography deviation analysis are proposed and performed. Results show that the tooth surface deviation is positive with positive spheric radius and rake angle errors and contrary results can be found for other three tool errors. In addition, the impact of the pressure angle error is the strongest. In addition, the rake angle error has the weakest effect and the influence of spheric radius error on the tooth surface deviation is unsubstantial. For location of tooth surface deviation, the maximum deviation is at the top on the heel and the minimum deviation is at the middle on the toe for spheric radius error. The maximum and minimum deviations are at the top and the middle tooth on the heel for other factors, respectively.


Author(s):  
Xuehong Shen ◽  
Dinghua Zhang ◽  
Liang Tan

To explore the effects of cutter path orientations on milling force, temperature, and surface integrity, end ball milling experiments of TC17 titanium alloy were accomplished derived from different cutter path orientations. The experiment results of milling force and temperature were obtained. Combining with the thermo-mechanical coupling, this paper analyzes the impact of the cutter path orientations on the surface roughness, surface topography, in-depth residual stress, microhardness distributions, and microstructure. The results indicate that the maximum milling force is 224.24 N and the temperature is 672°C under vertical downward milling path, while horizontal downward orientation provides the lowest cutting force of 81.12 N and temperature of 493°C. The surface topography of the four cutter path orientations is basin-like shape, and the minimum surface roughness of 1.128 µm is achieved under vertical upward mode. Moreover, the maximum compressive residual stress of −491.8 MPa and the maximum residual stress layer depth of 45 µm are acquired under vertical downward milling. The maximum microhardness can arrive at 390 HV0.025 under the vertical path. Additionally, the transformation of the material microstructure remains elongated, bent, and fractured. The maximum plastic deformation layer depth is 44 µm under vertical downward milling path.


2015 ◽  
Vol 3 (3) ◽  
pp. 424-441 ◽  
Author(s):  
H. M. Rostam ◽  
S. Singh ◽  
N. E. Vrana ◽  
M. R. Alexander ◽  
A. M. Ghaemmaghami

The impact of biomaterial surface topography and chemistry on antigen presenting cells’ phenotype and function.


Sign in / Sign up

Export Citation Format

Share Document