scholarly journals Multi-resonance Phenomena in Stochastic Resonance Energy Harvesting: Influence of Periodic Signal Magnitude and Noise Intensity to the Dynamics

2021 ◽  
Vol 54 (20) ◽  
pp. 212-217
Author(s):  
Hongjip Kim ◽  
Lei Zuo
Open Physics ◽  
2009 ◽  
Vol 7 (3) ◽  
Author(s):  
Chunyan Bai ◽  
Luchun Du ◽  
Dongcheng Mei

AbstractThe stochastic resonance (SR) phenomenon induced by a multiplicative periodic signal in a logistic growth model with correlated noises is studied by using the theory of signal-to-noise ratio (SNR) in the adiabatic limit. The expressions of the SNR are obtained. The effects of multiplicative noise intensity α and additive noise intensity D, and correlated intensity λ on the SNR are discussed respectively. It is found that the existence of a maximum in the SNR is the identifying characteristic of the SR phenomena. In comparison with the SR induced by additive periodic signal, some new features are found: (1) When SNR as a function of λ for fixed ratio of α and D, the varying of α can induce a stochastic multi-resonance, and can induce a re-entrant transition of the peaks in SNR vs λ; (2) There exhibits a doubly critical phenomenon for SNR vs D and λ, i.e., the increasing of D (or λ) can induce the critical phenomenon for SNR with respect to λ (or D); (3) The doubly stochastic resonance effect appears when α and D are simultaneously varying in SNR, i.e., the increment of one noise intensity can help the SR on another noise intensity come forth.


2014 ◽  
Vol 667 ◽  
pp. 269-272
Author(s):  
Yun Liang Meng ◽  
Chang Xing Pei ◽  
Dong Wu Li

The phenomenon of stochastic resonance in a complex nonlinear system which is excited by both complex weak periodic signal and noise is investigated in this paper. The model of complex nonlinear system is given, and the effects of the input periodic signal amplitude and the noise intensity on the response amplitude of the system at the periodic signal frequency are discussed through numerical simulations. It is shown that the response amplitude of the system to the input periodic signal displays a non-monotonic dependence on the noise intensity, and the response peaks at a particular value of the noise intensity, which is known as stochastic resonance. The results in this paper propose a new way for controlling stochastic resonance in a complex nonlinear system.


2008 ◽  
Vol 18 (09) ◽  
pp. 2833-2839 ◽  
Author(s):  
N. V. AGUDOV ◽  
A. V. KRICHIGIN

The phenomena of stochastic resonance is studied in overdamped nonlinear monostable systems driven by a periodic signal and Gaussian white noise. It is shown that the signal power amplification as a function of input noise intensity can be different depending on nonlinearity: it can monotonically grow, decrease and it can reach a maximum at certain value of the noise intensity. Nevertheless, the output signal to noise ratio is shown to be always a decreasing function of input noise intensity.


2003 ◽  
Vol 14 (03) ◽  
pp. 303-310 ◽  
Author(s):  
J. F. L. FREITAS ◽  
M. L. LYRA

In this work, we study the stochastic resonance phenomenon in a bistable nonlinear dynamical system in the presence of an uncorrelated noise source whose distribution decays asymptotically as P(ξ) ∝ 1/ξ2α. We investigate the influence of the decay exponent α on the transition rate and on the optimal noise intensity giving the maximum signal-to-noise ratio when a weak periodic signal is superposed to the external noise. We find that the transition rate achieves a maximum for a finite decay exponent α. However, the optimal noise intensity for stochastic resonance depicts a monotonic power-law correction relative to the usual behavior of nonlinear dynamical systems driven by Gaussian noises.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
F. Naha Nzoupe ◽  
Alain M. Dikandé

AbstractThe occurrence of stochastic resonance in bistable systems undergoing anomalous diffusions, which arise from density-dependent fluctuations, is investigated with an emphasis on the analytical formulation of the problem as well as a possible analytical derivation of key quantifiers of stochastic resonance. The nonlinear Fokker–Planck equation describing the system dynamics, together with the corresponding Ito–Langevin equation, is formulated. In the linear response regime, analytical expressions of the spectral amplification, of the signal-to-noise ratio and of the hysteresis loop area are derived as quantifiers of stochastic resonance. These quantifiers are found to be strongly dependent on the parameters controlling the type of diffusion; in particular, the peak characterizing the signal-to-noise ratio occurs only in close ranges of parameters. Results introduce the relevant information that, taking into consideration the interactions of anomalous diffusive systems with a periodic signal, can provide a better understanding of the physics of stochastic resonance in bistable systems driven by periodic forces.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document