scholarly journals Comparison of three different adhesive joints using static and dynamic impact tests: development of a new drop weight impact test rig incorporating a modified Arcan fixture

Author(s):  
A. Maurel-Pantel ◽  
M. Voisin ◽  
F. Mazerolle ◽  
F. Lebon
Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 203
Author(s):  
Sun-ho Go ◽  
Alexandre Tugirumubano ◽  
Hong-gun Kim

With the increasing use of carbon fiber reinforced plastics in various fields, carbon fiber composites based on prepregs have attracted attention in industries and academia research. However, prepreg manufacturing processes are costly, and the strength of structures varies depending on the orientation and defects (pores and delamination). For the non-contact evaluation of internal defects, the lock-in infrared thermography was proposed to investigate the defects in the composites subjected to the compression after impact test (CAI). The drop-weight impact test was conducted to study the impact behavior of the composites according to fibers orientation for composite fabricated using unidirectional (UD) carbon fiber prepregs. Using CAI tests, the residual compressive strengths were determined, and the damage modes were detected using a thermal camera. The results of the drop weight impact tests showed that the specimen laminated at 0° suffered the largest damage because of susceptibility of the resin to impact. The specimens with 0°/90° and +45°/−45° fibers orientation exhibited more than 90% of the impact energy absorption and good impact resistance. Furthermore, the specimens that underwent the impact tests were subjected to compressive test simultaneously with the lock-in thermography defects detection. The results showed that internal delamination, fibers splitting, and broken fibers occurred. The temperature differences in the residual compression tests were not significant.


2011 ◽  
Vol 148-149 ◽  
pp. 388-392
Author(s):  
Jie Du ◽  
Chun Ting Ma

Based on Interaction energy of solid ball, the new particle damper is designed which can be used in a high temperature and high shock energy. To verify the design of the damper, a falling weight Impact test rig is designed, a sensor, data acquisition card and computer hardware constitutes a signal test system. Experimental results show that the particle diameter is the biggest impact for the role of the particle damper , the characteristics of the displacement curves are increased at first and then decreased, the opposite effect of the time. At the same time filled with particles and the degree of damping rod embedment also have an impact on energy consumption.


2018 ◽  
Vol 43 (11) ◽  
pp. 1164-1170 ◽  
Author(s):  
Xue Zheng ◽  
Shaojun Yu ◽  
Wen Wen ◽  
Yushi Wen ◽  
Pei Wang ◽  
...  

2021 ◽  
Vol 118 (5) ◽  
pp. 501
Author(s):  
Yulong Liu ◽  
Dexin Ding ◽  
Wenguang Chen ◽  
Nan Hu ◽  
Lingling Wu ◽  
...  

The relationship between energy input and particle size of ore samples after crushing and effect of microwave pretreatment on impact crushing of lead-zinc ore were studied by drop weight impact test. The results showed that the lead-zinc ore became softer and had higher degree of crushing after microwave pretreatment. Compared with continuous microwave pretreatment, pulsed microwave pretreatment could improve the drop weight impact crushing efficiency of lead-zinc ore. When the specific comminution energy were 5 kW h/t, 10 kW h/t respectively, the crushing characteristic parameters t10 were 60.42% and 67.46% respectively by continuous microwave. But the values of t10 were increased to 68.64% and 75.88% respectively after pulsed microwave radiation under same microwave power and time. In addition, water quenching could more promote the impact crushing efficiency of lead-zinc ore after microwave irradiation.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4000 ◽  
Author(s):  
Bing Liu ◽  
Jingkai Zhou ◽  
Xiaoyan Wen ◽  
Jianhua Guo ◽  
Xuanyu Zhang ◽  
...  

In this study, the impact resistance of coral concrete with different carbon fiber (CF) dosages subjected to drop-weight impact test was investigated. For this purpose, three concrete strength grades (C20, C30, C40) and six CF dosages (0.0%, 0.3%, 0.6%, 1.0%, 1.5%, and 2.0% by weight of the binder) were considered, and a total of 18 groups of carbon fibers reinforced coral concrete (CFRCC) were cast. For each group, eight specimens were tested following the drop-weight impact test suggested by CECS 13. Then, the two-parameter Weibull distribution theory was adopted to statistically analyze the variations in experimental results. The results indicated that the addition of CFs could transform the failure pattern from obvious brittleness to relatively good ductility and improve the impact resistance of coral concrete. Moreover, the impact resistance of CFRCC increases with the CF dosage increasing. The statistical analysis showed that the probability distribution of the blow numbers at the initial crack and final failure of CFRCC approximately follows the two-parameter Weibull distribution.


2005 ◽  
Vol 39 (18) ◽  
pp. 1607-1620 ◽  
Author(s):  
H. Ku ◽  
Y. M. Cheng ◽  
C. Snook ◽  
D. Baddeley

2020 ◽  
Vol 244 ◽  
pp. 118321 ◽  
Author(s):  
Sallal R. Abid ◽  
Munther L. Abdul Hussein ◽  
Sajjad H. Ali ◽  
Ala'a F. Kazem

Sign in / Sign up

Export Citation Format

Share Document