Resistance determinant erm(X) is borne by transposon Tn5432 in Bifidobacterium thermophilum and Bifidobacterium animalis subsp. lactis

2008 ◽  
Vol 31 (6) ◽  
pp. 544-548 ◽  
Author(s):  
Angela H.A.M. van Hoek ◽  
Sigrid Mayrhofer ◽  
Konrad J. Domig ◽  
Henk J.M. Aarts
2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2489
Author(s):  
Ami Yoo ◽  
Mengshi Lin ◽  
Azlin Mustapha

The application of nanoparticles (NPs) for food safety is increasingly being explored. Zinc oxide (ZnO) and silver (Ag) NPs are inorganic chemicals with antimicrobial and bioactive characteristics and have been widely used in the food industry. However, not much is known about the behavior of these NPs upon ingestion and whether they inhibit natural gut microflora. The objective of this study was to investigate the effects of ZnO and Ag NPs on the intestinal bacteria, namely Escherichia coli, Lactobacillus acidophilus, and Bifidobacterium animalis. Cells were inoculated into tryptic soy broth or Lactobacilli MRS broth containing 1% of NP-free solution, 0, 12, 16, 20 mM of ZnO NPs or 0, 1.8, 2.7, 4.6 mM Ag NPs, and incubated at 37 °C for 24 h. The presence and characterization of the NPs on bacterial cells were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Membrane leakage and cell viability were assessed using a UV-visible spectrophotometer and confocal electron microscope, respectively. Numbers of treated cells were within 1 log CFU/mL less than those of the controls for up to 12 h of incubation. Cellular morphological changes were observed, but many cells remained in normal shapes. Only a small amount of internal cellular contents was leaked due to the NP treatments, and more live than dead cells were observed after exposure to the NPs. Based on these results, we conclude that ZnO and Ag NPs have mild inhibitory effects on intestinal bacteria.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 627
Author(s):  
Malaiporn Wongkaew ◽  
Bow Tinpovong ◽  
Korawan Sringarm ◽  
Noppol Leksawasdi ◽  
Kittisak Jantanasakulwong ◽  
...  

Pectin recovered from mango peel biomass can be used as a potential source for pectic oligosaccharide hydrolysate with excellent probiotic growth-enhancing performance and prebiotic potentials. Consequently, the objectives of the current study were to optimise the enzyme hydrolysis treatment of mango peel pectin (MPP) and to evaluate the pectic oligosaccharide effects of Lactobacillus reuteri DSM 17938 and Bifidobacterium animalis TISTR 2195. Mango of “chok anan” variety was chosen due to its excessive volume of biomass in processing and high pectin content. The optimal treatment for mango peel pectic oligosaccharide (MPOS) valorisation was 24 h of fermentation with 0.3% (v/v) pectinase. This condition provided small oligosaccharides with the molecular weight of 643 Da that demonstrated the highest score of prebiotic activity for both of B. animalis TISTR 2195 (7.76) and L. reuteri DSM 17938 (6.87). The major sugar compositions of the oligosaccharide were fructose (24.41% (w/w)) and glucose (19.52% (w/w)). For the simulation of prebiotic fermentation, B. animalis TISTR 2195 showed higher proliferation in 4% (w/v) of MPOS supplemented (8.92 log CFU/mL) than that of L. reuteri (8.53 CFU/mL) at 72 h of the fermentation time. The main short chain fatty acids (SCFAs) derived from MPOS were acetic acid and propionic acid. The highest value of total SCFA was achieved from the 4% (w/v) MPOS supplementation for both of B. animalis (68.57 mM) and L. reuteri (69.15 mM). The result of this study therefore conclusively advises that MPOS is a novel pectic oligosaccharide resource providing the opportunity for the sustainable development approach through utilising by-products from the fruit industry.


Author(s):  
Wen-Yang Lin ◽  
Yi-Wei Kuo ◽  
Ching-Wei Chen ◽  
Yu-Fen Huang ◽  
Chen-Hung Hsu ◽  
...  

AbstractOral-nasal mucosal immunity plays a crucial role in protecting the body against bacterial and viral invasion. Safe probiotic products have been used to enhance human immunity and oral health. In this study, we verified the beneficial effects of mixed viable probiotic tablets, consisting of Lactobacillus salivarius subsp. salicinius AP-32, Bifidobacterium animalis subsp. lactis CP-9, and Lactobacillus paracasei ET-66, and heat-killed probiotic tablets, consisting of L. salivarius subsp. salicinius AP-32 and L. paracasei ET-66, on oral immunity among 45 healthy participants. Participants were randomly divided into viable probiotic, heat-killed probiotic, and placebo groups. The administration of treatment lasted for 4 weeks. Saliva samples were collected at Weeks 0, 2, 4, and 6, and Lactobacillus, Bifidobacterium and Streptococcus mutans populations and IgA concentration were measured. IgA concentrations, levels of TGF-beta and IL-10 in PBMCs cells were quantified by ELISA method. Results showed that salivary IgA levels were significantly increased on administration of both the viable (119.30 ± 12.63%, ***P < 0.001) and heat-killed (116.78 ± 12.28%, ***P < 0.001) probiotics for 4 weeks. Among three probiotic strains, AP-32 would effectively increase the levels of TGF-beta and IL-10 in PBMCs. The oral pathogen Streptococcus mutans was significantly reduced on viable probiotic tablet administration (49.60 ± 31.01%, ***P < 0.001). The in vitro antibacterial test confirmed that viable probiotics effectively limited the survival rate of oral pathogens. Thus, this clinical pilot study demonstrated that oral probiotic tablets both in viable form or heat-killed form could exert beneficial effects on oral immunity via IL-10, TGB-beta mediated IgA secretion. The effective dosage of viable probiotic content in the oral tablet was 109 CFUs/g and the heat-killed oral tablet was 1 × 1010 cells/g.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 590
Author(s):  
Glenise B. Voss ◽  
Vera Sousa ◽  
Paulo Rema ◽  
Manuela. E. Pintado ◽  
Luísa M. P. Valente

The apparent digestibility coefficients (ADCs) of differently processed okara meals were assessed in Nile tilapia diets: dried okara not autoclaved (FOK), dried okara autoclaved (AOK), okara hydrolyzed with Alcalase (ALOK) or Cynara cardunculus proteases (CYOK), and hydrolyzed okara fermented with lactic bacteria: Lactobacillus rhamnosus R11 (CYR11OK) or Bifidobacterium animalis ssp. lactis Bb12 (CYB12OK). Okara processing significantly affected nutrient digestibility: dry matter ADC was highest in CYR11OK (80%) and lowest in FOK (40%). The lowest protein digestibility was observed in CYR11OK (72%), and the highest in AOK (97%) and CYOK (91%), evidencing the effectiveness of the autoclave and the use of C. cardunculus proteases to increase okara protein bioavailability. The inclusion of up to 20% of AOK or CYOK did not affect fish growth, nutrient utilization, or whole body composition of Nile tilapia. The flesh quality (color, pH, water activity, cohesiveness, elasticity and resilience) was not affected by the dietary incorporation of AOK or CYOK. Fish fed with AOK diets stand out for their high density of muscle fibers, particularly in AOK20, which can explain their high muscle firmness and may result in further hypertrophic growth. Altogether, results suggest that hydrolyzed or autoclaved okara are valuable ingredients for Nile tilapia diets.


Sign in / Sign up

Export Citation Format

Share Document