In vitro disintegration of goat brain cystatin fibrils using conventional and gemini surfactants: Putative therapeutic intervention in amyloidoses

2016 ◽  
Vol 93 ◽  
pp. 493-500 ◽  
Author(s):  
Waseem Feeroze Bhat ◽  
Imtiyaz Ahmad Bhat ◽  
Sheraz Ahmad Bhat ◽  
Bilqees Bano
Oncogene ◽  
2021 ◽  
Author(s):  
Satoshi Takagi ◽  
Yuki Sasaki ◽  
Sumie Koike ◽  
Ai Takemoto ◽  
Yosuke Seto ◽  
...  

AbstractOsteosarcoma is the most common primary malignant bone cancer, with high rates of pulmonary metastasis. Osteosarcoma patients with pulmonary metastasis have worse prognosis than those with localized disease, leading to dramatically reduced survival rates. Therefore, understanding the biological characteristics of metastatic osteosarcoma and the molecular mechanisms of invasion and metastasis of osteosarcoma cells will lead to the development of innovative therapeutic intervention for advanced osteosarcoma. Here, we identified that osteosarcoma cells commonly exhibit high platelet activation-inducing characteristics, and molecules released from activated platelets promote the invasiveness of osteosarcoma cells. Given that heat-denatured platelet releasate maintained the ability to promote osteosarcoma invasion, we focused on heat-tolerant molecules, such as lipid mediators in the platelet releasate. Osteosarcoma-induced platelet activation leads to abundant lysophosphatidic acid (LPA) release. Exposure to LPA or platelet releasate induced morphological changes and increased invasiveness of osteosarcoma cells. By analyzing publicly available transcriptome datasets and our in-house osteosarcoma patient-derived xenograft tumors, we found that LPA receptor 1 (LPAR1) is notably upregulated in osteosarcoma. LPAR1 gene KO in osteosarcoma cells abolished the platelet-mediated osteosarcoma invasion in vitro and the formation of early pulmonary metastatic foci in experimental pulmonary metastasis models. Of note, the pharmacological inhibition of LPAR1 by the orally available LPAR1 antagonist, ONO-7300243, prevented pulmonary metastasis of osteosarcoma in the mouse models. These results indicate that the LPA–LPAR1 axis is essential for the osteosarcoma invasion and metastasis, and targeting LPAR1 would be a promising therapeutic intervention for advanced osteosarcoma.


Author(s):  
Keishi Yamasaki ◽  
Masashi Nagata ◽  
Rie Sato ◽  
Nao Setoguchi ◽  
Natsuna Akimoto ◽  
...  

Author(s):  
Abhishek Kumar Singh ◽  
Kasif Shakeel

In the present investigation, immediate release tablet formulation of etizolam was developed for management of insomnia and anxiety using different Superdisintegrants (Sodium Starch Glycolate, Croscarmellose, Crospovidone), Povidone K-30 and Magnesium stearate by wet granulation method. The drug-excipients interaction was investigated by UV spectrophotometer. The granules and tablets of Etizolam were evaluated for various pre and post compression parameters like angle of repose, compressibility index, hausners ratio, tablet hardness, friability and in vitro disintegration and dissolution studies and their results were found to be satisfactory. These results suggest that maximum in vitro dissolution profile of formulation F6 were found to have equivalent percentage of drug release and concluded that F6 is better and similar to innovator product.


2021 ◽  
Vol 11 (2) ◽  
pp. 103-108
Author(s):  
Ahirwar Varsha ◽  
Khushwant S. Yadav ◽  
Shailendra Bindaiya

Our studies on the performance of formulation development and evaluation of fast dissolving films of Oloptadine HCL its anti-allergic drug. Prepare mouth dissolving film of Oloptadine HCl by solvent casting method. To characterize the prepared mouth dissolving film of Oloptadine HCL in terms of— Thickness, percent elongation, tack test, swelling index, in-vitro disintegration time and dissolution test. Oloptadine OLO), 11-[{z}-3-(Dimethlamino) propylidene]-6-11-dihydrobenz [b, e] oxepin-2-acetic acid hydrochloride, is widely used as an antihistaminic. Oloptadine HCL is a relatively selective histamine H1-receptor antagonist that inhibits the release of histamine from mast cells. Oloptadine does not affect alpha-adrenergic dopamine, muscarinic type 1 and 2 or serotonin receptor. They are hydrophobic in nature and non-polar, sparingly soluble in water and freely soluble methanol, ethanol. Olopatadine HCl is a mouth dissolving film. We is trying to sort out the problem of allergic. They are rapidly onset of action, when placed upon the tongue that it is disperse rapidly swallowing within 3-5 seconds without need of water or chewing.


2001 ◽  
Vol 268 (5) ◽  
pp. 1269-1279 ◽  
Author(s):  
Matthew L. Fielden ◽  
Christele Perrin ◽  
Andreas Kremer ◽  
Mark Bergsma ◽  
Marc C. Stuart ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Manar Adnan Tamer ◽  
Shaimaa Nazar Abd-al Hammid ◽  
Balqis Ahmed

Objective: The aim of this study was to formulate and in vitro evaluate fast dissolving oral film of practically insoluble bromocriptine mesylate to enhance its solubility and to improve its oral bioavailability by avoiding first pass effect as well as to produce an immediate release action of the drug from the film for an efficient management of diabetes mellitus type II in addition to an improvement of the patient compliance to this patient-friendly dosage form.Methods: The films were prepared by the solvent casting method using hydroxypropyl methylcellulose of grades (E3, E5, E15), polyvinyl alcohol (PVA), pectin and gelatin as film-forming polymers in addition to polyethene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer. Poloxamer 407 was used as a surfactant, sodium saccharin as a sweetening agent, citric acid as a saliva stimulating agent, vanilla as a flavouring agent and crospovidone as a super disintegrant. The prepared films then tested for physical characterization, thickness, weight uniformity, mechanical characteristics (folding endurance, tensile strength, percent elongation and Young's modulus), surface pH, in vitro disintegration time, drug content and an in vitro drug release.Results: Films were found to be satisfactory when evaluated for physical characterization, thickness, weight uniformity, mechanical tests, in vitro disintegration time, folding endurance, drug content and an in vitro drug release. The surface pH of all the films was found to be neutral or minor change. Films in vitro drug release studies were also done using USP dissolution apparatus type II (paddle type). The in vitro drug release profile in the optimized formulation F14 was gave 86.8 % of drug released at 2 min. The optimized formulation F14 was also showed satisfactory pH (6.2±0.2), drug content (99.2±0.5%), the disintegration time of 9.2±0.1 seconds and the time needed for 80% of medication to be released (T80 %) was 1.35 minute.Conclusion: The bromocriptine mesylate fast dissolving oral film was formulated. The given film disintegrates within nine seconds which release the drug rapidly and gives an action.


1965 ◽  
Vol 48 (5) ◽  
pp. 981-985
Author(s):  
David A Libby ◽  
Max E Schertel ◽  
Henry W Loy

Abstract The human bioassay method has been utilized to determine the availability of certain vitamins from preparations which did not pass the official USP disintegration test. Urinary riboflavin recoveries from the test preparation were compared to urinary recoveries from equivalent quantities of a riboflavin reference standard. Tablets which traversed the entire digestive tract and were recovered intact were assayed for specific vitamins. Multiple vitamin dosage forms which did not disintegrate during the USP in vitro disintegration test were found to be also significantly resistant to human digestive action. Vitamin availabilities from these forms as determined by urinary excretion were seriously impaired. Extreme individual variations were noted in tests of the same product. Several preparations were found to be totally unavailable to certain individuals.


Sign in / Sign up

Export Citation Format

Share Document