Human Bioassay Techniques for Determining Availability of Vitamins from Preparations Resistant to In Vitro Disintegration

1965 ◽  
Vol 48 (5) ◽  
pp. 981-985
Author(s):  
David A Libby ◽  
Max E Schertel ◽  
Henry W Loy

Abstract The human bioassay method has been utilized to determine the availability of certain vitamins from preparations which did not pass the official USP disintegration test. Urinary riboflavin recoveries from the test preparation were compared to urinary recoveries from equivalent quantities of a riboflavin reference standard. Tablets which traversed the entire digestive tract and were recovered intact were assayed for specific vitamins. Multiple vitamin dosage forms which did not disintegrate during the USP in vitro disintegration test were found to be also significantly resistant to human digestive action. Vitamin availabilities from these forms as determined by urinary excretion were seriously impaired. Extreme individual variations were noted in tests of the same product. Several preparations were found to be totally unavailable to certain individuals.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 123 ◽  
Author(s):  
Maoqi Fu ◽  
Jozef Al-Gousous ◽  
Johannes Andreas Blechar ◽  
Peter Langguth

In this study, the potential for correlation between disintegration and dissolution performance of enteric-coated (EC) dosage forms was investigated. Different enteric hard shell capsule formulations containing caffeine as model drug were tested for disintegration (in a compendial disintegration tester) and for dissolution in both USP type I (basket) and type II (paddle) apparatuses using different media. Overall, good correlations were obtained. This was observed for both the basket and the paddle apparatus, indicating that the use of disintegration testing as a surrogate for dissolution testing (allowed by International Conference on Harmonization (ICH) for immediate release dosage forms in case, in addition to other conditions, a correlation between disintegration and dissolution is proven) could be extended to include delayed release dosage forms.


Author(s):  
R. Nagaraju ◽  
Rajesh Kaza

Salbutamol and theophylline are available in conventional dosage forms, administered four times a day, leading to saw tooth kinetics and resulting in ineffective therapy. The combination of these two drugs in a single dosage form will enhance the patient compliance and prolong bronchodilation. Various polymers, such as hydroxy propyl methylcellulose K4M (HPMC- K4M), hydroxy propyl methylcellulose K100M (HPMC- K100M), xanthan gum, ethyl cellulose and hydroxy propyl methylcellulose phthalate (HPMC-P) were studied. HPMC-P and HPMC- K4M were found to be best in controlling the release. In-vitro dissolution studies were carried out for all the bi-layered tablets developed using USP dissolution apparatus type 2 (paddle). It was found that the tablet FB15-FW3 showed 50% release of salbutamol in first hour and the remaining was released for eight hours. However, theophylline was found to be released as per the USP specifications. The IR spectrum was taken for FB15-FW3 formulation and it revealed that there is no disturbance in the principal peaks of pure drugs salbutamol and theophylline. This further confirms the integrity of pure drugs and no incompatibility of them with excipients. Also, formulation of FB15-FW3 has shown required release pattern and complies with all the evaluated parameters and comparable to the marketed formulation.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Abdul Latif Ershad ◽  
Ali Rajabi-Siahboomi ◽  
Shahrzad Missaghi ◽  
Daniel Kirby ◽  
Afzal Rahman Mohammed

A lack of effective intervention in addressing patient non-adherence and the acceptability of solid oral dosage forms combined with the clinical consequences of swallowing problems in an ageing world population highlight the need for developing methods to study the swallowability of tablets. Due to the absence of suitable techniques, this study developed various in vitro analytical tools to assess physical properties governing the swallowing process of tablets by mimicking static and dynamic stages of time-independent oral transitioning events. Non-anatomical models with oral mucosa-mimicking surfaces were developed to assess the swallowability of tablets; an SLA 3D printed in vitro oral apparatus derived the coefficient of sliding friction and a friction sledge for a modified tensometer measured the shear adhesion profile. Film coat hydration and in vitro wettability was evaluated using a high-speed recording camera that provided quantitative measurements of micro-thickness changes, simulating static in vivo tablet–mucosa oral processing stages with artificial saliva. In order to ascertain the discriminatory power and validate the multianalytical framework, a range of commonly available tablet coating solutions and new compositions developed in our lab were comparatively evaluated according to a quantitative swallowability index that describes the mathematical relationship between the critical physical forces governing swallowability. This study showed that the absence of a film coat significantly impeded the ease of tablet gliding properties and formed chalky residues caused by immediate tablet surface erosion. Novel gelatin- and λ-carrageenan-based film coats exhibited an enhanced lubricity, lesser resistance to tangential motion, and reduced stickiness than polyvinyl alcohol (PVA)–PEG graft copolymer, hydroxypropyl methylcellulose (HPMC), and PVA-coated tablets; however, Opadry® EZ possessed the lowest friction–adhesion profile at 1.53 a.u., with the lowest work of adhesion profile at 1.28 J/mm2. For the first time, the in vitro analytical framework in this study provides a fast, cost-effective, and repeatable swallowability ranking method to screen the in vitro swallowability of solid oral medicines in an effort to aid formulators and the pharmaceutical industry to develop easy-to-swallow formulations.


1990 ◽  
Vol 14 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Jerome P. Skelly ◽  
Gordon L. Amidon ◽  
William H. Barr ◽  
Leslie Z. Benet ◽  
James E. Carter ◽  
...  

2007 ◽  
Vol 30 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Rüdiger Gröning ◽  
Christina Cloer ◽  
Manolis Georgarakis ◽  
Rotraut S. Müller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document