Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells

2018 ◽  
Vol 112 ◽  
pp. 448-460 ◽  
Author(s):  
Khairy M. Tohamy ◽  
Mostafa Mabrouk ◽  
Islam E. Soliman ◽  
Hanan H. Beherei ◽  
Mohamed A. Aboelnasr
Author(s):  
Shah Sarita ◽  
Tatara Alexander ◽  
Santoro Marco ◽  
Henslee Allan ◽  
Guldberg Robert ◽  
...  

2014 ◽  
Vol 15 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Zeeshan H Ahmad ◽  
Sarah M Alkahtany ◽  
Sukumaran Anil

ABSTRACT Aim To evaluate and compare the cytotoxicity of various concentrations of sodium hypochlorite on immortalized human bone marrow mesenchymal stem cells (MSCs). Materials and methods The 5.25 percent sodium hypochlorite (NaOCl) at concentrations of 0.5, 0.1, 0.025, 0.0125, and 0.005 mg/ml were used to assess the cytotoxic effect on MSCs. Immortalized human bone marrow mesenchymal stem cells (hTERT-MSCs) were exposed to NaOCl at 5 different concentrations. Cell viability was assessed by 3-(4, 5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alamarBlue assays. The cell morphology changes were assessed with scanning electron microscopy (SEM) after exposure to 2, 4, and 24 hour incubation. The ethidium bromide/acridine orange (EB/ AO) fluorescent stain was applied to the cells in the 8-chamber slides after they were incubated with the testing agents for 2 and 4 hours to detect live and dead cells. The observations were quantitatively and qualitatively analyzed. Results The cell viability study using MTT assay and AB assay showed significant reduction with varying concentration at 2 and 4 hours incubation period. The cell viability decreased with the higher percentage of NaOCl. The exposure time also revealed an inverse relation to the cell viability. The SEM analysis showed reduction in the number of cells and morphological alterations with 0.5 mg/ml at 2 and 4 hours compared to 0.025 mg/ml NaOCl. Destruction of the cells with structural alterations and lysis was evident under fluorescence microscope when the cells were exposed to 0.5 mg/ml NaOCl. Conclusion Within the limitations of this in vitro study it can be concluded that NaOCl is toxic to the human bone marrow MSCs. The cell lysis was evident with higher concentration of sodium hypochlorite. From the observations, it can be concluded that a lower concentration of NaOCl may be used as endodontic irrigant due to its cytotoxic properties. Further studies are man datory to evolve a consensus on the optimal concentration of sodium hypochlorite to be used as endodontic irrigant. How to cite this article Alkahtani A, Alkahtany SM, Anil S. An in vitro Evaluation of the Cytotoxicity of Varying Concentrations of Sodium Hypochlorite on Human Mesenchymal Stem Cells. J Contemp Dent Pract 2014;15(4):473-481.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yongsun Kim ◽  
Seung Hoon Lee ◽  
Byung-jae Kang ◽  
Wan Hee Kim ◽  
Hui-suk Yun ◽  
...  

Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated thein vitroosteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). TheALP, runt-related transcription factor 2, osteopontin,andbone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering.


2016 ◽  
Vol 879 ◽  
pp. 2444-2449 ◽  
Author(s):  
Ekaterina Chudinova ◽  
Maria Surmeneva ◽  
Andrey Koptioug ◽  
Irina V. Savintseva ◽  
Irina Selezneva ◽  
...  

Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.


2021 ◽  
Vol 95 (2) ◽  
pp. 727-747
Author(s):  
Simone Rothmiller ◽  
Niklas Jäger ◽  
Nicole Meier ◽  
Thimo Meyer ◽  
Adrian Neu ◽  
...  

AbstractWound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Injury ◽  
2006 ◽  
Vol 37 (3) ◽  
pp. S33-S42 ◽  
Author(s):  
Lucy DiSilvio ◽  
Jacqueline Jameson ◽  
Zakareya Gamie ◽  
Peter V. Giannoudis ◽  
Eleftherios Tsiridis

Sign in / Sign up

Export Citation Format

Share Document