Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12

2020 ◽  
Vol 150 ◽  
pp. 1113-1120 ◽  
Author(s):  
Kallayanee Naloka ◽  
Kazunobu Matsushita ◽  
Gunjana Theeragool
Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 49
Author(s):  
Hélida Gomes de Oliveira Barud ◽  
Robson Rosa da Silva ◽  
Marco Antonio Costa Borges ◽  
Guillermo Raul Castro ◽  
Sidney José Lima Ribeiro ◽  
...  

Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.


Author(s):  
THANH XUAN NGUYEN ◽  
MUNG VAN PHAM ◽  
CUONG BA CAO

Objective: The short biological half-life (2-3 h) and low bioavailability (50 %) of ranitidine (RAN) following oral administration favor the development of a controlled release system. This study was aimed to develop and in vitro evaluate oral sustained-release RAN delivery system based on the bacterial nanocellulose material (BNM) produced by Komagataeibacter xylinus (K. xylinus) from selected culture media. Methods: BNMs are biosynthesized by K. xylinus in the standard medium (SM) and coconut water (CW). RAN was loaded in BNMs by the absorption method. The structural and physicochemical properties of BNMs and BNMs-RAN were evaluated via swelling behavior, FTIR, and FESEM techniques. Moreover, the effect of BNMs on RAN release profile and release kinetics was analyzed and evaluated. Results: The amount of loaded RAN or entrapment efficacy for BNM-CW is higher than for BNM-SM. The BNM-SM-RAN and BNM-CW-RAN exhibited a decreased initial burst release system followed by a prolonged RAN release up to 24 h in relation to the commercial tablets containing RAN. The RAN release from these formulations was found higher in the SGF medium than that of in SIF medium. RAN released from these formulations was found to follow the Korsmeyer-Peppas model and diffusion sustained drug release mechanism. The sustained release of RAN from BNM-SM-RAN was slower than for RAN from BNM-CW-RAN, but the mechanism of sustained RAN release was the same. Conclusion: Oral sustained-release RAN delivery system based on BNMs was successfully prepared and evaluated for various in vitro parameters. The biopolymers like BNM-SM and BNM-CW could be utilized to develop oral sustained RAN release dosage form.


2017 ◽  
Vol 9 (22) ◽  
pp. 19048-19056 ◽  
Author(s):  
Rahul Mangayil ◽  
Satu Rajala ◽  
Arno Pammo ◽  
Essi Sarlin ◽  
Jin Luo ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2322
Author(s):  
Milena Ugrin ◽  
Jelena Dinic ◽  
Sanja Jeremic ◽  
Sandra Dragicevic ◽  
Bojana Banovic Djeri ◽  
...  

Bacterial nanocellulose (BNC) stands out among polymers as a promising biomaterial due to its mechanical strength, hydrophilicity, biocompatibility, biodegradability, low toxicity and renewability. The use of scaffolds based on BNC for 3D cell culture has been previously demonstrated. The study exploited excellent properties of the BNC to develop an efficient and low-cost in vitro cell migration assay. The BNC scaffold was introduced into a cell culture 24 h after the SW480 cells were seeded, and cells were allowed to enter the scaffold within the next 24–48 h. The cells were stained with different fluorophores either before or after the introduction of the scaffold in the culture. Untreated cells were observed to enter the BNC scaffold in significant numbers, form clusters and retain a high viability after 48 h. To validate the assay’s usability for drug development, the treatments of SW480 cells were performed using aspirin, an agent known to reduce the migratory potential of this cell line in culture. This study demonstrates the application of BNC as a scaffold for cell migration testing as a low-cost alternative to commercial assays based on the Boyden chamber principle. The assay could be further developed for routine use in cancer research and anticancer drug development.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Deyaa Abol-Fotouh ◽  
Mohamed A. Hassan ◽  
Hassan Shokry ◽  
Anna Roig ◽  
Mohamed S. Azab ◽  
...  

2019 ◽  
Vol 49 ◽  
pp. 19-27 ◽  
Author(s):  
Ana Cristina Rodrigues ◽  
Ana Isabel Fontão ◽  
Aires Coelho ◽  
Marta Leal ◽  
Francisco A.G. Soares da Silva ◽  
...  

2020 ◽  
Author(s):  
Clara Angela ◽  
Jeffrey Young ◽  
Sisilia Kordayanti ◽  
Putu Virgina Partha Devanthi ◽  
Katherine .

Kombucha tea is a traditional fermented beverage of Manchurian origins which is made of sugar and tea. The fermentation involves the application of a symbiotic consortium of bacteria and yeast (SCOBY) in which their metabolites provide health benefits for the consumer and subsequently allow the product to protect itself from contamination. Additionally, kombucha tea fermentation also produces a byproduct in the form of a pellicle composed of cellulose (Bacterial Cellulose, BC). Compared to plant cellulose, BC properties are more superior, which makes it industrially important. However, BC production at industrial scale has been faced with many challenges, including low yield and high fermentation medium cost. Many researchers have focused their studies on the use of alternative low cost media, such as molasses, which is a by-product   of sugar refining process. To  maximize the BC production in molasses medium, it    is important to select the microbial strains that can grow and produce BC at high yield in molasses. This study aimed to isolate and characterize BC-producing bacteria and a dominant yeast from kombucha culture which had been previously adapted in molasses medium. The isolation of bacteria was performed using Nutrient Agar (NA) and Hestrin and Schramm (HS) supplemented with cycloheximide, while yeast was isolated using Potato Dextrose Agar (PDA) supplemented with chloramphenicol. The most dominant colonies were isolated and then subjected to microscopic observation for morphological analysis. The pure bacteria and yeast isolates were then identified by sequencing the 16S rRNA gene and D1/D2 region of the 26S rRNA, respectively. The bacteria isolates obtained were all from closely related genera: Komagataeibacter sp. DS1MA.62A, Komagataeibacter xylinus, Komagataeibacter saccharivorans, Komagataeibacter xylinus and Gluconacetobacter saccharivorans. The single isolated yeast was identified as Brettanomyces bruxellensis. This study helps to elucidate  the BC-producing species which thrive in molasses medium for potential use in the BC production using molasses as alternative cheap carbon source. Also, the study revealed that the co-culture of Komagataeibacter sp. DS1MA.62A and B. bruxellensis could produce BC from molasses supplemented with caffeine and acetate buffer at an average yield of 27.7±1.83 g/L. Keywords: Kombucha, SCOBY, bacterial cellulose, Acetobacter, Komagataeibacter, Brettanomyces, alternative medium, molasses, caffeine, acetate buffer.


Sign in / Sign up

Export Citation Format

Share Document