scholarly journals Engineering the surface of prostate tumor cells and hyaluronan/chitosan multilayer films to modulate cell-substrate adhesion properties

2020 ◽  
Vol 158 ◽  
pp. 197-207 ◽  
Author(s):  
J.B.M. Rocha Neto ◽  
R.J. Gomes Neto ◽  
R.A. Bataglioli ◽  
T.B. Taketa ◽  
S.B. Pimentel ◽  
...  
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Amrutha Patkunarajah ◽  
Jeffrey H Stear ◽  
Mirko Moroni ◽  
Lioba Schroeter ◽  
Jedrzej Blaszkiewicz ◽  
...  

Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions.


2017 ◽  
Author(s):  
Klaske J. Schippers ◽  
Scott A. Nichols

ABSTRACTβ-catenin acts as a transcriptional co-activator in the Wnt/β-catenin signaling pathway and a cytoplasmic effector in cadherin-based cell adhesion. These functions are ancient within animals, but the earliest steps in β-catenin evolution remain unresolved due to limited data from key lineages – sponges, ctenophores and placozoans. Previous studies in sponges have characterized β-catenin expression dynamics and used GSK3B antagonists to ectopically activate the Wnt/β-catenin pathway; both approaches rely upon untested assumptions about the conservation of β-catenin function and regulation in sponges. Here, we test these assumptions using an antibody raised against β-catenin from the sponge Ephydatia muelleri. We find that cadherin-complex genes co-precipitate with endogenous Em β-catenin from cell lysates, but that Wnt pathway components do not. However, through immunostaining we detect both cell boundary and nuclear populations, and we find evidence that Em β-catenin is a conserved substrate of GSK3B. Collectively, these data support conserved roles for Em β-catenin in both cell adhesion and Wnt signaling. Additionally, we find evidence for an Em β-catenin population associated with the distal ends of F-actin stress fibers in apparent cell-substrate adhesion structures that resemble focal adhesions. This finding suggests a fundamental difference in the adhesion properties of sponge tissues relative to other animals, in which the adhesion functions of β-catenin are typically restricted to cell-cell adhesions.


1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

Author(s):  
Birandra K. Sinha ◽  
Hiroyuki Yamazaki ◽  
Helen M. Eliot ◽  
Erasmus Schneider ◽  
Markus M. Borner ◽  
...  

Cell Cycle ◽  
2010 ◽  
Vol 9 (20) ◽  
pp. 4190-4199 ◽  
Author(s):  
Patrick M. Brauer ◽  
Yu Zheng ◽  
Lin Wang ◽  
Angela Tyner

1992 ◽  
Vol 118 (5) ◽  
pp. 1235-1244 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.


Sign in / Sign up

Export Citation Format

Share Document