Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845

2020 ◽  
Vol 163 ◽  
pp. 1240-1248 ◽  
Author(s):  
Mamta Singh ◽  
Hema Sori ◽  
Rahul Ahuja ◽  
Jairam Meena ◽  
Devinder Sehgal ◽  
...  
2006 ◽  
Vol 55 (4) ◽  
pp. 375-378 ◽  
Author(s):  
Daniela M. Ferreira ◽  
Eliane N. Miyaji ◽  
Maria Leonor S. Oliveira ◽  
Michelle Darrieux ◽  
Ana Paula M. Arêas ◽  
...  

Pneumococcal surface protein A (PspA) is a promising candidate for the development of cost-effective vaccines against Streptococcus pneumoniae. In the present study, BALB/c mice were immunized with DNA vaccine vectors expressing the N-terminal region of PspA. Animals immunized with a vector expressing secreted PspA developed higher levels of antibody than mice immunized with the vector expressing the antigen in the cytosol. However, both immunogens elicited similar levels of protection against intraperitoneal challenge. Furthermore, immunization with exactly the same fragment in the form of a recombinant protein, with aluminium hydroxide as an adjuvant, elicited even higher antibody levels, but this increased humoral response did not correlate with enhanced protection. These results show that DNA vaccines expressing PspA are able to elicit protection levels comparable to recombinant protein, even though total anti-PspA IgG response is considerably lower.


2004 ◽  
Vol 72 (5) ◽  
pp. 3077-3080 ◽  
Author(s):  
Francesco Iannelli ◽  
Damiana Chiavolini ◽  
Susanna Ricci ◽  
Marco Rinaldo Oggioni ◽  
Gianni Pozzi

ABSTRACT The role of pneumococcal surface protein C (PspC; also called SpsA, CbpA, and Hic) in sepsis by Streptococcus pneumoniae was investigated in a murine infection model. The pspC gene was deleted in strains D39 (type 2) and A66 (type 3), and the mutants were tested by being injected intravenously into mice. The animals infected with the mutant strains showed a significant increase in survival, with the 50% lethal dose up to 250-fold higher than that for the wild type. Our findings indicate that PspC affords a decisive contribution to sepsis development.


2012 ◽  
Vol 75 (12) ◽  
pp. 3733-3746 ◽  
Author(s):  
Alfonso Olaya-Abril ◽  
Lidia Gómez-Gascón ◽  
Irene Jiménez-Munguía ◽  
Ignacio Obando ◽  
Manuel J. Rodríguez-Ortega

2013 ◽  
Vol 46 (3) ◽  
pp. 180-186 ◽  
Author(s):  
Masura Mohd Yatim ◽  
Siti Norbaya Masri ◽  
Mohd Nasir Mohd Desa ◽  
Niazlin Mohd Taib ◽  
Syafinaz Amin Nordin ◽  
...  

2009 ◽  
Vol 191 (9) ◽  
pp. 3011-3023 ◽  
Author(s):  
Jae Kap Jeong ◽  
Ohsuk Kwon ◽  
Yun Mi Lee ◽  
Doo-Byoung Oh ◽  
Jung Mi Lee ◽  
...  

ABSTRACT Streptococcus pneumoniae is a causative agent of high morbidity and mortality. Although sugar moieties have been recognized as ligands for initial contact with the host, only a few exoglycosidases have been reported to occur in S. pneumoniae. In this study, a putative β-galactosidase, encoded by the bgaC gene of S. pneumoniae, was characterized for its enzymatic activity and virulence. The recombinant BgaC protein, expressed and purified from Escherichia coli, was found to have a highly regiospecific and sugar-specific hydrolysis activity for the Galβ1-3-GlcNAc moiety of oligosaccharides. Interestingly, the BgaC hydrolysis activity was localized at the cell surface of S. pneumoniae, indicating that BgaC is expressed as a surface protein although it does not have a typical signal sequence or membrane anchorage motif. The surface localization of BgaC was further supported by immunofluorescence microscopy analysis using an antibody raised against BgaC and by a reassociation assay with fluorescein isothiocyanate-labeled BgaC. Although the bgaC deletion mutation did not significantly attenuate the virulence of S. pneumoniae in vivo, the bgaC mutant strain showed relatively low numbers of viable cells compared to the wild type after 24 h of infection in vivo, whereas the mutant showed higher colonization levels at 6 and 24 h postinfection in vivo. Our data strongly indicate for the first time that S. pneumoniae bgaC encodes a surface β-galactosidase with high substrate specificity that is significantly associated with the infection activity of pneumococci.


2000 ◽  
Vol 68 (5) ◽  
pp. 3028-3033 ◽  
Author(s):  
A. David Ogunniyi ◽  
Rebekah L. Folland ◽  
David E. Briles ◽  
Susan K. Hollingshead ◽  
James C. Paton

ABSTRACT The vaccine potential of a combination of three pneumococcal virulence proteins was evaluated in an active-immunization–intraperitoneal-challenge model in BALB/c mice, using very high challenge doses of Streptococcus pneumoniae. The proteins evaluated were a genetic toxoid derivative of pneumolysin (PdB), pneumococcal surface protein A (PspA), and a 37-kDa metal-binding lipoprotein referred to as PsaA. Mice immunized with individual proteins or combinations thereof were challenged with high doses of virulent type 2 or type 4 pneumococci. The median survival times for mice immunized with combinations of proteins, particularly PdB and PspA, were significantly longer than those for mice immunized with any of the antigens alone. A similar effect was seen in a passive protection model. Thus, combinations of pneumococcal proteins may provide the best non-serotype-dependent protection against S. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document