Effects of a stable prostacyclin analogue beraprost sodium on VEGF and PAI-1 gene expression in vascular smooth muscle cells

2009 ◽  
Vol 132 (3) ◽  
pp. 411-418 ◽  
Author(s):  
Hiroyuki Atsuta ◽  
Tsuyoshi Uchiyama ◽  
Hiroyoshi Kanai ◽  
Tatsuya Iso ◽  
Toru Tanaka ◽  
...  
2002 ◽  
Vol 39 (4) ◽  
pp. 503-512 ◽  
Author(s):  
Atai Watanabe ◽  
Hiroyoshi Kanai ◽  
Masashi Arai ◽  
Kenichi Sekiguchi ◽  
Tsuyoshi Uchiyama ◽  
...  

1989 ◽  
Vol 61 (03) ◽  
pp. 517-521 ◽  
Author(s):  
Walter E Laug ◽  
Ruedi Aebersold ◽  
Ambrose Jong ◽  
Willian Rideout ◽  
Barbara L Bergman ◽  
...  

SummaryLarge arteries have a natural resistance to tumor cell invasion thought to be due to the production of protease inhibitors. Vascular smooth muscle cells (VSMC) representing the major cellular part of arteries were isolated from human aortas and grown in tissue culture. These cells were found to produce large amounts of inhibitors of plasminogen activators (PA). Fractionation of VSMC-conditioned medium by heparin-affigel chromatography separated three immunologically and functionally distinct PA inhibitors (PAI), namely PAI-1, PAI-2 and protease-nexin I. The three inhibitors were characterized by functional assays and immunoblotting. PA inhibitor 2 (PAI-2) had little affinity for heparin, whereas PA inhibitor 1 (PAI-l) bound to heparin and was eluted from the column at NaCl concentrations of 0. 1 to 0.35 M. Protease-nexin I, eluted at NaCl concentrations of 0.5 M and higher. Most of the PAI-1 was present in the latent, inactive form. PAI-1 was further purified by ion exchange chromatography on a Mono-Q column. Partial sequencing of the purified PAI-1 confirmed its nature by matching completely with the sequence deduced from the cDNA nucleotide sequence of endothelial cell PAI-1. Thus, human VSMC produce all three presently known PAI and these can be separated in a single heparin affinity purification step.


Circulation ◽  
2000 ◽  
Vol 102 (15) ◽  
pp. 1828-1833 ◽  
Author(s):  
Georg Nickenig ◽  
Kerstin Strehlow ◽  
Sven Wassmann ◽  
Anselm T. Bäumer ◽  
Katja Albory ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 2466-2479 ◽  
Author(s):  
XiaoLe Xu ◽  
Mengzi He ◽  
Tingting Liu ◽  
Yi Zeng ◽  
Wei Zhang

Background/Aims: salusin-ß is considered to be a potential pro-atherosclerotic factor. Regulation and function of vascular smooth muscle cells (VSMCs) are important in the progression of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts a vascular protective role beyond its metabolic effects. Salusin-ß has direct effects on VSMCs. The aim of the present study was to assess the effect of salusin-ß on PPARγ gene expression in primary cultured rat VSMCs. Methods: Western blotting analysis, real-time PCR and transient transfection approach were used to determine expression of target proteins. Specific protein knockdown was performed with siRNA transfection. Cell proliferation was determined by 5-bromo-2'-deoxyuridine incorporation. The levels of inflammation indicators interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) were determined using enzyme-linked immunosorbent assay. Results: Salusin-ß negatively regulated PPARγ gene expression at protein, mRNA and gene promoter level in VSMCs. The inhibitory effect of salusin-ß on PPARγ gene expression contributed to salusin-ß-induced VSMCs proliferation and inflammation in vitro. IγBa-NF-γB activation, but not NF-γB p50 or p65, mediated the salusin-ß-induced inhibition of PPARγ gene expression. Salusin-ß induced nuclear translocation of histone deacetylase 3 (HDAC3). HDAC3 siRNA prevented salusin-ß-induced PPARγ reduction. Nuclear translocation of HDAC3 in response to salusin-ß was significantly reversed by an IγBa inhibitor BAY 11-7085. Furthermore, IγBa-HDAC3 complex was present in the cytosol of VSMCs but interrupted after salusin-ß treatment. Conclusion: IγBa-HDAC3 pathway may contribute to salusin-ß-induced inhibition of PPARγ gene expression in VSMCs.


1998 ◽  
Vol 274 (2) ◽  
pp. C472-C480 ◽  
Author(s):  
Shinji Naito ◽  
Shunichi Shimizu ◽  
Shigeto Maeda ◽  
Jianwei Wang ◽  
Richard Paul ◽  
...  

Ets-1 is a transcription factor that activates expression of matrix-degrading proteinases such as collagenase and stromelysin. To study the control of ets-1 gene expression in rat vascular smooth muscle cells (VSMC), cells were exposed to factors known to regulate VSMC migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB), endothelin-1 (ET-1), and phorbol 12-myristate 13-acetate (PMA) induced a dose-dependent expression of ets-1 mRNA. These effects were abrogated by inhibition of protein kinase C (PKC) by H-7 or chronic PMA treatment. Ets-1 mRNA was superinduced by PDGF-BB and ET-1 in the presence of cycloheximide. The chelation of intracellular Ca2+ by 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-acetoxymethyl ester and the depletion of endoplasmic reticulum intracellular Ca2+concentration ([Ca2+]i) by thapsigargin inhibited PDGF-BB- and ET-1-induced ets-1 mRNA, whereas ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid had no effect. However, [Ca2+]irelease alone was not sufficient to increase ets-1 mRNA. Forskolin blocked ET-1-, PDGF-BB-, and PMA-induced ets-1 mRNA, as well as inositol phosphate formation, consistent with an effect through impairment of PKC activation. Inhibitors of ets-1 gene expression, such as H-7 and herbimycin A, inhibited the ET-1 induction of collagenase I mRNA. We propose that ets-1 may be an important element in the orchestration of matrix proteinase expression and of vascular remodeling after arterial injury.


Sign in / Sign up

Export Citation Format

Share Document