Thyroid hormone deficiency changes the distribution of oligodendrocyte/myelin markers during oligodendroglial differentiation in vitro

2006 ◽  
Vol 24 (7) ◽  
pp. 445-453 ◽  
Author(s):  
V. Younes‐Rapozo ◽  
J. Berendonk ◽  
T. Savignon ◽  
A.C. Manhães ◽  
P.C. Barradas
2009 ◽  
Vol 30 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Liqun Zhang ◽  
Christiana Marie Cooper-Kuhn ◽  
Ulf Nannmark ◽  
Klas Blomgren ◽  
Hans Georg Kuhn

Thyroid hormone is critical for the proper development of the central nervous system. However, the specific role of thyroid hormone on brain angiogenesis remains poorly understood. Treatment of rats from birth to postnatal day 21 (P21) with propylthiouracil (PTU), a reversible blocker of triiodothyronine (T3) synthesis, resulted in decreased brain angiogenesis, as indicated by reduced complexity and density of microvessels. However, when PTU was withdrawn at P22, these parameters were fully recovered by P90. These changes were paralleled by an altered expression of vascular endothelial growth factor A ( Vegfa) and basic fibroblast growth factor ( Fgf2). Physiologic concentrations of T3 and thyroxine (T4) stimulated proliferation and tubulogenesis of rat brain-derived endothelial (RBE4) cells in vitro. Protein and mRNA levels of VEGF-A and FGF-2 increased after T3 stimulation of RBE4 cells. The thyroid hormone receptor blocker NH-3 abolished T3-induced Fgf2 and Vegfa upregulation, indicating a receptor-mediated effect. Thyroid hormone inhibited the apoptosis in RBE4 cells and altered mRNA levels of apoptosis-related genes, namely Bcl2 and Bad. The present results show that thyroid hormone has a substantial impact on vasculature development in the brain. Pathologically altered vascularization could, therefore, be a contributing factor to the neurologic deficits induced by thyroid hormone deficiency.


1983 ◽  
Vol 258 (12) ◽  
pp. 7738-7745 ◽  
Author(s):  
W H Dillmann ◽  
A Barrieux ◽  
W E Neeley ◽  
P Contreras

2009 ◽  
Vol 34 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Liqun Zhang ◽  
Klas Blomgren ◽  
H. Georg Kuhn ◽  
Christi M. Cooper-Kuhn

2001 ◽  
pp. 59-64 ◽  
Author(s):  
F Bogazzi ◽  
L Bartalena ◽  
S Brogioni ◽  
A Burelli ◽  
F Raggi ◽  
...  

OBJECTIVE: To evaluate the molecular mechanisms of the inhibitory effects of amiodarone and its active metabolite, desethylamiodarone (DEA) on thyroid hormone action. MATERIALS AND METHODS: The reporter construct ME-TRE-TK-CAT or TSHbeta-TRE-TK-CAT, containing the nucleotide sequence of the thyroid hormone response element (TRE) of either malic enzyme (ME) or TSHbeta genes, thymidine kinase (TK) and chloramphenicol acetyltransferase (CAT) was transiently transfected with RSV-TRbeta into NIH3T3 cells. Gel mobility shift assay (EMSA) was performed using labelled synthetic oligonucleotides containing the ME-TRE and in vitro translated thyroid hormone receptor (TR)beta. RESULTS: Addition of 1 micromol/l T4 or T3 to the culture medium increased the basal level of ME-TRE-TK-CAT by 4.5- and 12.5-fold respectively. Amiodarone or DEA (1 micromol/l) increased CAT activity by 1.4- and 3.4-fold respectively. Combination of DEA with T4 or T3 increased CAT activity by 9.4- and 18.9-fold respectively. These data suggested that DEA, but not amiodarone, had a synergistic effect with thyroid hormone on ME-TRE, rather than the postulated inhibitory action; we supposed that this was due to overexpression of the transfected TR into the cells. When the amount of RSV-TRbeta was reduced until it was present in a limited amount, allowing competition between thyroid hormone and the drug, addition of 1 micromol/l DEA decreased the T3-dependent expression of the reporter gene by 50%. The inhibitory effect of DEA was partially due to a reduced binding of TR to ME-TRE, as assessed by EMSA. DEA activated the TR-dependent down-regulation by the negative TSH-TRE, although at low level (35% of the down-regulation produced by T3), whereas amiodarone was ineffective. Addition of 1 micromol/l DEA to T3-containing medium reduced the T3-TR-mediated down-regulation of TSH-TRE to 55%. CONCLUSIONS: Our results demonstrate that DEA, but not amiodarone, exerts a direct, although weak, effect on genes that are regulated by thyroid hormone. High concentrations of DEA antagonize the action of T3 at the molecular level, interacting with TR and reducing its binding to TREs. This effect may contribute to the hypothyroid-like effect observed in peripheral tissues of patients receiving amiodarone treatment.


2008 ◽  
Vol 294 (1) ◽  
pp. E69-E77 ◽  
Author(s):  
Nathalie Koulmann ◽  
Lahoucine Bahi ◽  
Florence Ribera ◽  
Hervé Sanchez ◽  
Bernard Serrurier ◽  
...  

The present experiment was designed to examine the effects of hypothyroidism and calcineurin inhibition induced by cyclosporin A (CsA) administration on both contractile and metabolic soleus muscle phenotypes, with a novel approach to the signaling pathway controlling mitochondrial biogenesis. Twenty-eight rats were randomly assigned to four groups, normothyroid, hypothyroid, and orally treated with either CsA (25 mg/kg, N-CsA and H-CsA) or vehicle (N-Vh and H-Vh), for 3 wk. Muscle phenotype was estimated by the MHC profile and activities of oxidative and glycolytic enzymes. We measured mRNA levels of the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), the major regulator of mitochondrial content. We also studied the expression of the catalytic A-subunit of calcineurin (CnA) both at protein and transcript levels and mRNA levels of modulatory calcineurin inhibitor proteins (MCIP)-1 and -2, which are differentially regulated by calcineurin activity and thyroid hormone, respectively. CsA-administration induced a slow-to-fast MHC transition limited to the type IIA isoform, which is associated with increased oxidative capacities. Hypothyroidism strongly decreased both the expression of fast MHC isoforms and oxidative capacities. Effects of CsA administration on muscle phenotype were blocked in conditions of thyroid hormone deficiency. Changes in the oxidative profile were strongly related to PGC-1α changes and associated with phosphorylation of p38 MAPK. Calcineurin and MCIPs mRNA levels were decreased by both hypothyroidism and CsA without additive effects. Taken together, these results suggest that adult muscle phenotype is primarily under the control of thyroid state. Physiological levels of thyroid hormone are required for the effects of calcineurin inhibition on slow oxidative muscle phenotype.


1993 ◽  
Vol 13 (3) ◽  
pp. 1719-1727
Author(s):  
C S Suen ◽  
W W Chin

The expression of the rat growth hormone (rGH) gene in the anterior pituitary gland is modulated by Pit-1/GHF-1, a pituitary-specific transcription factor, and by other more widely distributed factors, such as the thyroid hormone receptors (TRs), Sp1, and the glucocorticoid receptor. Thyroid hormone (T3)-mediated transcriptional stimulation of rGH gene expression has been extensively studied in vivo and in vitro including the measurements of (i) rGH mRNA by blot hybridization, (ii) transcriptional rate of rGH gene by nuclear run-on, and (iii) reporter gene expression in which a chimeric plasmid containing 5'-flanking sequences of the rGH gene linked to a reporter gene has been transfected either stably or transiently into pituitary and/or nonpituitary cells. From these studies, it has been suggested that the Pit-1/GHF-1 binding site is necessary for full T3 action. We developed a cell-free in vitro transcription system to examine further the roles of the TRs and Pit-1/GHF-1 in rGH gene activation. Using GH3 nuclear extract as a source of TRs and Pit-1/GHF-1, this in vitro transcription assay showed that T3 stimulation of rGH promoter activity is dependent on the addition of T3 to the GH3 nuclear extract. This transcriptional stimulation was augmented with increasing concentrations of ligand and was T3, but not T4 or reverse T3, specific. T3-mediated stimulation of rGH promoter activity was completely abolished by preincubation of the nuclear extract with rGH-thyroid hormone response element (-200 to -160) but not with Pit-1/GHF-1 (-137 to -65) oligonucleotides. Further, neither deletion of both Pit-1/GHF-1 binding sites nor mutation of the proximal Pit-1/GHF-1 binding site from the rGH promoter abrogated the T3 effect. These results provide evidence that T3-stimulated rGH promoter activity is independent of Pit-1/GHF-1 and raise the possibility that the stimulation of rGH gene expression by T3 might involve direct interaction of TRs with the general transcriptional apparatus.


2009 ◽  
Vol 28 (3) ◽  
pp. 586 ◽  
Author(s):  
Akinori Ishihara ◽  
Farhana B. Rahman ◽  
Ladda Leelawatwattana ◽  
Porntip Prapunpoj ◽  
Kiyoshi Yamauchi

Sign in / Sign up

Export Citation Format

Share Document